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1. Implementation Details
We implemented our model in pytorch. In order to ob-

tain the pan-optic masks and object categories, we adapted
a pipeline described in Figure 1. Next, in CLIP we extract
the frame-level class tokens from the output of Image and
Text encoders to obtain 512D feature vectors for scene, ob-
ject, and text representatives such as FS , FO, Ftxt. For
all usage of functional operators across SIaT, we have the
following hyperparameters. In both f(x) and g(x), where
x ∈ {co., fi., AQ}, we have 3 layers of multi-head self
attention with 8 parallel heads followed by feed forward
network (FFN) 128 output neurons. Similarly, in cross
attention (CA) functional operator has 3 layers of multi-
head cross attention with 8 parallel heads followed by the
feed-forward network (FFN) 128 output neurons. For the
uncertainty estimator (α), we use a multi-layer perceptron
(MLP), that has input, hidden, and output layers with 128,
64, 1 neuron, and the output is sigmoid activated. Next,
for the classifier in the future decoder is MLP with
input and output layer has 256 and 26 neurons, where 26 is
the number of abnormal categories in our AHB-F dataset.
The proposed framework is end-to-end trainable excluding
the backbone CLIP image and text encoders. We train us-
ing Adam optimizer with a learning rate of 0.0001. The
loss weighting factors are set to λ1 = λ2 = 1 and. We also
randomly select 8 videos as a mini-batch and compute the
gradient. Then the loss is computed and back-propagated
for the whole batch. We train the model up to 100 epochs
on a single 2080Ti GPU.

Additionally, for the short and long-term evaluation, we
have sampled the videos in 32 frames per second to repre-
sent 32, 64, 96, 128, 256 frames as 1st, 2nd, 3rd, 4th, and
8th seconds respectively. In our case frames present in 1st-
to-3rd seconds account for short-term evaluation and frames
present in 4th-to-8th seconds account for long-term evalua-
tion. Next, we have re-implemented and evaluated the state-
of-the-art (SoTA) methods like FUTR [2], OADTR [5],
LSTR [6], TesTra [8], and JOADAA [3] in our AHB-F
dataset and evaluation protocol. Thus, in Figure 3, 7, 5, and
6 we provide the architectural configurations of the SoTAs.
Note that, the hyperparameters and model optimizations are
kept the same as the original implementations.

2. State-of-the-art Anomaly Category-wise
Analysis and Comparison

In this section, we provide an anomaly category-wise
performance analysis and comparison of our SIaT with
state-of-the-art (SoTA) methods in Long and Short-term fu-
ture prediction i.e. 1st second to 8th second. It can be ob-
served from Figure 2 that the average mAP of our method
is best among all other SoTA on Human-to-Human anoma-
lies (such as fighting, arrest, chasing, shooting) in both and
long-term future prediction. However, on Human-to-Object
interaction-based anomalies (such as shoplifting, and steal-
ing) our method is second best after LSTR [6]. This is
majorly due to the object of interest getting occluded in
many cases and our method is slightly inferior in handling
such conditions. Further, on Human-to-(Huamn&Object)
interaction-based anomalies (such as Assault, Protest), our
method along with others faces difficulties in anticipation.
This shows that in the abnormal human behavior anticipa-
tion task there exists much room for improvement, thus our
datasets and method will serve as a baseline for tasks to pro-
mote further research in this direction.
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Figure 1. Typical pipeline adopted in our experiments for extracting good quality panoptic masks from low-resolution videos of our AHB-F
datasets. Here, each video is sequentially processed to obtain the multi-object masks. In step-1 a video super-resolution model (RealBasic
VSR [1]) is applied on the input video to upscale the video to 4× original resolution. Then in step-2, the resultant of step-1 is passed
through CLACHE [7] algorithm for color contrast equalization and human body edge sharpening. Thanks to step-1 and step-2, in step-3
yolov7-pose [4] extracts good quality multi-person key points which are used in SIaT.

Figure 2. Category-wise anticipation performance on our AHB-F dataset. Categories highlighted with red dotted circles indicate our best
performance on those.

References
[1] Kelvin C.K. Chan, Shangchen Zhou, Xiangyu Xu, and

Chen Change Loy. Investigating tradeoffs in real-world video
super-resolution. In IEEE Conference on Computer Vision
and Pattern Recognition, 2022. 2

[2] Dayoung Gong, Joonseok Lee, Manjin Kim, Seong Jong Ha,
and Minsu Cho. Future transformer for long-term action an-
ticipation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3052–3061,
2022. 1

[3] Mohammed Guermal, Abid Ali, Rui Dai, and François
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Figure 3. OADTR: Given an input streaming video V = {ft}0t=−T , a task token is attached to the visual features output by the feature
extraction network. Then the token feature sequence is input into the standard Transformer’s encoder to model long-range historical
temporal dependencies. Afterward, the decoder of OADTR anticipates the future context information in parallel.. Note that OADTR,
including the encoder and decoder, is an end-to-end parallel framework.

Figure 4. FUTR: It is an an end-to-end attention neural network to anticipate actions in parallel decoding, leveraging global interactions
between past and future actions for long-term anticipation. FUTR is composed of an encoder and a decoder; each classifies action labels of
past frames (action segmentation) and anticipates future action labels and corresponding durations (action anticipation), respectively. The
encoder learns distinctive feature representation from past actions via self-attention, and the decoder learns long-term relations between
past and future actions via self-attention and cross-attention. For simplicity, FUTR set the number of past frames αT as 5 and the number
of object queries M as 5 in this figure. Note that (Xl)i and (Ql)i indicate ith index of Xl and Ql, respectively.



Figure 5. LSTR: It is formulated in an encoder-decoder manner. Specifically, the LSTR encoder compresses the long-term memory of
size mL to n1 encoded latent features, and the LSTR decoder references related context information from the encoded memory with the
short-term memory of size mS for action recognition of the present. The LSTR encoder and decoder are built with Transformer decoder
units which take the input tokens (dark green arrows) and output tokens (dark blue arrows) as inputs. During inference, LSTR processes
every incoming frame in an online manner, absent future context.

Figure 6. TesTra: The basic setup follows LSTR. A long-term memory compresses a long temporal history into M representative queries.
A short-term attention mechanism uses compressed memory and a short history of frames to compute current and future actions. The main
advantage of TeSTra is that the long-memory incurs only constant cost, and thus allows for much more efficient long-term reasoning.



Figure 7. JOADAA: This architecture has three units i) Past processing: a short-term past transformer-encoder that enhances observation
features, ii) Anticipation prediction:a transformer-decoder that anticipates the upcoming actions in the future frames, using embedding
output from the past processing block and a set of learnable queries, and iii) Online Action prediction, to detect current ongoing action.
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