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A Impact of Style Discrepancy on DC
To illustrate the effect of style discrepancy between the

condensed and original datasets, we conduct experiments in
which we drift the style of samples from Herding [45] core-
set selection (µl,σl) toward that of DM (µ̂l, σ̂l), as shown
in Figure 1.c, and d of the manuscript. Specifically, during
the training of a CNN, the drifted style information is com-
puted by a convex combination of (µl,σl) and (µ̂l, σ̂l):

σl
drifted = (1− γ)σl + γσ̂l, (12)

µl
drifted = (1− γ)µl + γµ̂l, (13)

where γ denotes the drift ratio, i.e., the extent to which the
style information shifts from the original towards the target
style. Then, we compute the feature maps with the drifted
style information, following the approach of the pioneering
work [56]:
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drifted. (14)

Subsequently, Φl
drifted passes through the remaining layers

of Φ, as shown in Figure 5a.
Figures 1.c, and d of the manuscript show the effect

of style discrepancy. As the style diverges from that of
the original samples, i.e., increasing the gap between the
training and testing data styles, the model performance
decreases. This outcome is consistent with the well-
established style bias in DNNs [19, 2, 72, 65, 65].

B Ablation on Hyperparamers

B.1 α in Equation 7

The overall style matching objective is defined as LS =
αLMM + LCM , where α is a weighting factor balancing
the moments matching, LMM , and correlation matching,
LCM , losses. Here, we perform ablation on the α, shown
in Figure 5b, and c. Results show that employing both
LMM and LCM with equal weight, i.e., α = 1, yields the

k

IPC× 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

IPC=10 48.95 49.15 49.90 49.83 49.42 48.81 48.14 47.85 47.54 46.65 45.20
IPC=50 63.00 63.56 63.96 63.68 63.45 63.14 62.5 61.9 61.2 61.15 58.5

Table 6. Ablation study on the hyperparameter k for LICD in
Equation 9 for IPC=10 and 50 on CIFAR10 dataset, showing the
testing accuracy (%) of the condensed dataset on CIFAR10.

best performance, highlighting the complementary roles of
these two losses. Specifically, LMM captures style informa-
tion represented by the mean and variance of feature maps,
while LCM captures style information through the correla-
tion among feature maps.

B.2 k in Equation 9

Figures 4a, and b of the manuscript show that condensed
samples learned by DM [67] tend to form dense clusters,
indicating the need for a criterion to encourage diversity. In
LICD, k specifies the number of nearest intra-class samples
in the embedding space. We designed the loss to repel each
condensed sample from its k closest intra-class neighbors,
thereby enhancing intra-class diversity. We conducted ex-
periments to determine the optimal k for different IPCs. A
smaller k focuses on diversifying a localized neighborhood
of samples, while a larger k degrades results by encouraging
broader dispersion. Large k values can overly disperse syn-
thetic samples, compromising class consistency and authen-
ticity. Our experiments revealed that setting k to 0.2× IPC
yields optimal results for both IPC=10 and IPC=50.

B.3 β in Equation 10 and λ in Equation 11

Figure 6 illustrates the impact of β and λ on our method’s
performance, corresponding to LICD and LS in Equations
10 and 11, respectively. Optimal results for both loss com-
ponents are achieved at β = 10 and λ = 5 × 103. The
magnitudes of LICD and LS are significantly lower com-
pared to LMMD, necessitating the adjustment of hyperpa-
rameters to higher values for balance. Results in Figure 6
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Figure 5. a) Details of the experiment in Figure 1c, and d of the manuscript. (b, c) Ablation on α in Equation 7 for IPC=10 on both
CIFAR10 and CIFAR100 datasets. d) Average dissimilarity and entropy texture features based on GLCM method [75] across real and
condensed set with IPC=10 for one category in CIFAR10 datasets. The texture features of the condensed set learned by our method more
closely resemble those of real images, compared to the DM method.

Figure 6. Ablation on β and λ in Equations 10 and 11 of the
manuscript, respectively, for IPC=10 on CIFAR10 dataset.

demonstrate that integrating style information and promot-
ing intra-class diversity consistently enhances performance,
up to a threshold of 5 × 103 and 10, respectively. Beyond
this point, performance starts to decline, attributed to an
overemphasis on style matching at the expense of the dis-
criminative features highlighted by LMMD. Moreover, it is
vital to balance intra-class diversity enhancement to prevent
class overlap or confusion. Therefore, exceeding the opti-
mal thresholds for the style-matching and intra-class diver-
sity coefficients results in a decline in model performance.

C Visualization
Figures 7 and 8 display the resulting condensed sets

for CIFAR100 and TinyImageNet, learned by DM and our
method, alongside the real images. The improvement in
visual quality and diversity with our method is attributed
to the SM module and ICD component, detailed in Sec-
tions 3.3 and 3.4 of the manuscript, which effectively re-
duce the style gap between original and condensed sets and
enhance intra-class diversity among condensed samples, re-
spectively.

D Style

D.1 Style Gap Analysis

As discussed in the Introduction, our comparison of style
indicators between CIFAR10’s real and condensed datasets

(Figure 1.a) reveals a significant style gap. To evaluate our
method’s effectiveness in mitigating this gap, we repeated
the experiment with our approach, as shown in Figure 9.
The results demonstrate that our method successfully nar-
rows the style discrepancy using the SM module.

D.2 Texture Analysis

Conventionally, style can be characterized by the textural
attributes of an image, which include roughness, smooth-
ness, and color diversity in the image [16, 18]. Texture anal-
ysis in the field of image processing is a crucial component
and can be broadly categorized into four main approaches:
statistical, geometric, model-based, and signal processing
techniques [74, 75]. Among these, the Gray-Level Co-
occurrence Matrix (GLCM), introduced by Haralick et al.
[75], is a prominent statistical method for texture analysis.
GLCM is foundational for texture analysis, emphasizing the
spatial distribution and relation of pixels to describe an im-
age’s surface characteristics effectively [75, 77].

Utilizing the GLCM method, we employ two texture fea-
tures including dissimilarity and entropy to analyze the tex-
tural statistics of images, which are computed as [76, 77]:

Dissimilarity =

n−1∑
i=0

n−1∑
j=0

p(i, j) · |i− j|, (15)

Entropy = −
n−1∑
i=0

n−1∑
j=0

p(i, j) · ln(p(i, j)), (16)

where n denotes the grayscale level, and p(i, j) is the nor-
malized grayscale value at positions i and j within the ker-
nel, summing to 1. We employ different kernels (3× 3 and
5× 5, a region or a set of neighbors around a central pixel)
and report the average of them in the results. Dissimilar-
ity evaluates the variation in intensity among adjacent pixel
pairs, offering insights into texture contrast and complex-
ity [76]. Entropy, measures the randomness in intensity dis-
tribution, thereby reflecting the unpredictability and diver-
sity of textural patterns [76].

As illustrated in Figure 5d, there is a significant gap in
both texture features between real images and those learned



Figure 7. Visualizations of (a) real and (b) condensed images learned by DM and (c) our method for CIFAR100 with IPC=10. Both
methods are initialized from real samples. Our method exhibits improved visual quality and diversity compared to DM.

Figure 8. Visualizations of (a) real and (b) condensed images learned by DM and (c) our method for TinyImageNet with IPC=10. Both
methods are initialized from real samples. Our method exhibits improved visual quality and diversity compared to DM.

Figure 9. 2D t-SNE visualization of style statistics computed from
the first layer’s feature map of ConvNet, for real CIFAR10 im-
ages, and condensed set learned by DM and our method for two
categories, demonstrating the effectiveness of our approach in re-
ducing the style gap.

by the DM. The usage of the style matching module intro-
duced by our method brings the texture features in the con-
densed set closer to real data compared to the baseline of
DM [67], as shown in Figure 5d. Specifically, our method

achieves dissimilarity and entropy features that are 5% and
0.56% closer to real features compared to DM, respectively,
indicating improvements in texture matching between orig-
inal and learned condensed sets in our method.

E Style Matching in Multiple Layers

To evaluate the impact of the SM module across dif-
ferent blocks, we applied it to each block of the ConvNet
architecture, which consists of three convolutional blocks.
Our results, presented in Table 8, indicate that applying
this module individually after each block improves per-
formance. These consistent enhancements across different
blocks highlight the presence of beneficial style knowledge
for DC at various depths within the DNN. Ultimately, ap-



plying this module across all three blocks yields the best
results, as demonstrated in Table 8, underscoring the exis-
tence of distinct style information throughout the layers of
the DNN.

F Application: Neural Architecture
Search

Neural Architecture Search (NAS) aims to identify the
best DNN architecture candidates. NAS has become an
important use case for dataset condensation (DC) since a
condensed dataset can be used as a proxy for the original
data to efficiently search for optimal architectures. Here,
we compare the performance of the proposed method with
three baselines: DM, DSA, and Random Selection. Follow-
ing [68], we explore the application of our method in NAS
on the CIFAR-10 dataset, using a search space of 720 Con-
vNets by varying hyperparameters. Please refer to [68] for
full experimental details. We trained architectures on both
the original and condensed datasets for 200 epochs. Table
7 presents: 1) accuracy on the test data, 2) Spearman’s rank
correlation coefficient between the testing accuracy of the
top models selected using condensed datasets and the whole
training data, 3) training time required for training 720 ar-
chitectures, and 4) memory footprint of the datasets. The
proposed method achieves the highest accuracy among its
competitors, coming within one percent of the accuracy ob-
tained by training on the full CIFAR-10 dataset. Moreover,
the training time is significantly reduced from 8604.3 min-
utes to 142.6 minutes. Additionally, our method enhances
the Spearman’s rank correlation coefficient for DM, indicat-
ing that a reliable ranking of architectures is obtained using
the proposed method.

Random DSA DM Ours Whole Dataset

Accuracy 84.0 82.6 82.8 84.2 85.9
Correlation -0.04 0.68 0.76 0.80 1.0
Time cost (min) 142.6 142.6 142.6 142.6 3580.2
Storage (imgs) 500 500 500 500 50000

Table 7. Neural architecture search experiments on CIFAR-10
dataset for the search space of 720 ConvNets.
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