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Algorithm 1 ReMix
Input:

Encoder ✓e,
Momentum encoder ✓m,
Mini-batch size B,
Number of epochs E,
Number of iterations in epoch I ,
Labeled multi-camera data Dm,
Unlabeled single-camera data Ds.

Output: Trained momentum encoder ✓m.
1: for epoch = 1 to E do

2: Obtain embeddings Mm from the momentum
encoder ✓m for multi-camera data Dm;

3: Calculate centroids and camera centroids for
multi-camera data Dm using embeddings Mm;

4: Get pseudo labeled part eDs of single-camera
data Ds, as well as embeddings Ms from
the momentum encoder ✓m and centroids
using Algorithm 2;

5: for iter = 1 to I do

6: Train ✓e with the general loss in Eq. (1):
Lcc is calculated only for Dm,
Lins, Laug and Lcen for Dm and eDs;

7: Update ✓m using ✓e by Eq. (2);
8: end for

9: end for

6. Detailed Analysis

6.1. Clustering

In ReMix, we use two types of training data — labeled
multi-camera and unlabeled single-camera data (see Algo-
rithm 1). Since our method uses unlabeled single-camera
data, pseudo labels are obtained for part of it at the begin-
ning of each epoch. The pseudo labeling procedure occurs
according to Algorithm 2. As we can see, our method uses
DBSCAN [9] for clustering, which has several parameters.
One of the main parameters is the distance threshold, which
regulates the maximum distance between two instances in
order to consider them neighbors.

If a small distance threshold is set, then DBSCAN marks
more hard positive instances as different classes. In con-
trast, a large distance threshold causes DBSCAN to mark
more hard negative instances as the same class. Therefore,
it is necessary to find the optimal value of this parameter for
specific data.

In our main paper, the distance threshold is set to 0.8,
which is justified by the results of the experiments presented

Algorithm 2 Single-camera Data Pseudo Labeling
Input:

Momentum encoder ✓m,
Unlabeled single-camera data Ds,
Mini-batch size B,
Number of iterations in epoch I .

Output: pseudo labeled dataset D, embeddings E and cen-
troids C.

1: D  ; . initialize a pseudo labeled dataset
2: E  ; . initialize a list of embeddings
3: C  ; . initialize a list of centroids
4: counter  0 . pseudo labeled images counter
5: limit B ⇤ I . number of images for pseudo labeling
6: while counter < limit do

7: Randomly select a video V from Ds;
8: Obtain embeddings eE from the momentum

encoder ✓m for images from the video V;
9: Generate a pseudo labeled dataset eD using

embeddings eE and DBSCAN;
10: Calculate centroids eC for the pseudo labeled dataset

eD using embeddings eE;
11: Update the pseudo labeled dataset D, the list of

embeddings E and the list of centroids C using
eD, eE and eC, respectively;

12: Update counter using eD;
13: end while

Threshold 0.65 0.70 0.80 0.85

Rank1 76.3 76.3 76.9 76.0

mAP 60.2 60.5 60.7 60.1

Table 8. Comparison of different distance thresholds in DBSCAN.
We train the algorithm on MSMT17-merged and single-camera
data from LUPerson, and test it on DukeMTMC-reID.

in Tab. 8. Additionally, Fig. 4 shows examples of single-
camera data clusters obtained during ReMix training.

6.2. Mini-batch Size

In our method, we compose a mini-batch from a mixture
of images from multi-camera and single-camera datasets.
Let Bm = N

m
P ⇥ N

m
K be the number of images from

multi-camera data in a mini-batch, and Bs = N
s
P ⇥ N

s
K

be the number of images from single-camera data in a mini-
batch. So, the mini-batch has a size of B = Bm + Bs =
N

m
P ⇥N

m
K +N

s
P ⇥N

s
K images (Sec. 3.2). Here, N

m
P

(Ns
P ) is the number of labels (pseudo labels) from multi-



Figure 4. Examples of single-camera data clusters obtained during ReMix training. Four random images from each arbitrary cluster are
selected for visualization.

camera (single-camera) data, and N
m
K (Ns

K) is the number
of images for each label (pseudo label) from multi-camera
(single-camera) data.

In our main paper, we set Nm
P = N

s
P = 8 and N

m
K =

N
s
K = 4. Thus, the size of each mini-batch is 64 (that is,

Bm = Bs = 32 and B = Bm + Bs = 64). We conduct
several experiments to determine the impact of mini-batch
size on the accuracy of ReMix. As can be seen from Tab. 9,
the values for parameters Bm and Bs selected in our main
work are among the optimal ones. The experimental results
given in Tab. 10 show a relationship between the values for
parameters Nm

K and N
s
K and the quality of the algorithm.

Separately, it is worth noting the influence of the value
for parameter Nm

P on the quality of our algorithm. Tab. 9a
shows how much the accuracy of the algorithm decreases
when Bm = 16. A similar decrease in accuracy occurs
with N

m
K = 8 (see Tab. 10a). This is because in both cases

N
m
P = 4 (in the first case, Nm

P = Bm/N
m
K = 16/4 = 4;

in the second case, Nm
P = Bm/N

m
K = 32/8 = 4). Thus,

we can conclude that the quality of ReMix is significantly
affected by the number of different labels in the mini-batch.

6.3. Input Image Size

Most works devoted to the person re-identification task
use input images of size 256⇥ 128 pixels. Input images
of the same size are used in our method. However, after
studying other state-of-the-art methods in detail, we noticed
that [24–26] use larger input images — 384⇥ 128 pixels.

We conducted several experiments to analyze the quality
of ReMix with this size of the input images. The results of

Bm Rank1 mAP

16 69.1 49.0

32 75.8 58.7

64 75.0 58.9

(a) Multi-camera data.

Bs Rank1 mAP

16 77.3 61.4

32 77.6 61.6

64 77.1 61.4

(b) Single-camera data.

Table 9. Comparison of different numbers of images for each data
type in a mini-batch. In ”multi-camera data” experiments, we use
only MSMT17-merged for training (Nm

K = 4, Nm
P = Bm/Nm

K

and Bs = 0). In ”single-camera data”, we train the algorithm on
MSMT17-merged and single-camera data from LUPerson (Ns

K =
4, Ns

P = Bs/N
s
K and Bm = 32). The DukeMTMC-reID dataset

is used for testing in all these experiments.

N
m
K Rank1 mAP

2 76.0 58.5

4 75.8 58.7

8 70.6 51.0

(a) Multi-camera data.

N
s
K Rank1 mAP

2 76.6 61.0

4 77.6 61.6

8 77.5 62.1

(b) Single-camera data.

Table 10. Comparison of different values for parameters Nm
K and

Ns
K . In ”multi-camera data” experiments, we use only MSMT17-

merged for training (Bm = 32, Nm
P = Bm/Nm

K and Bs = 0). In
”single-camera data”, we train the algorithm on MSMT17-merged
and single-camera data from LUPerson (Bs = 32, Ns

P = Bs/N
s
K

and Bm = 32, Nm
K = 4). The DukeMTMC-reID dataset is used

for testing in all these experiments.

these experiments are shown in Tab. 11. As can be seen,
the accuracy of our method improves as the size of the in-



Image Size Single-camera Inference Time* Market-1501 DukeMTMC-reID
Rank1 mAP Rank1 mAP

256⇥ 128
7 90 ms 78.4 51.7 75.8 58.7

3 84.0 61.0 77.6 61.6

384⇥ 128
7 149 ms 79.2 51.3 76.2 59.3

3 85.1 62.7 78.4 63.3

* Inference speed is estimated in a single-core test on the Intel Core i7-9700K.

Table 11. Comparison of different input image sizes. We train the algorithm on MSMT17-merged and single-camera data from LUPerson
(where applicable), and test it on DukeMTMC-reID.

Architecture Single-camera Inference Time* Market-1501 DukeMTMC-reID
Rank1 mAP Rank1 mAP

ResNet50-IBN 7 90 ms 78.4 51.7 75.8 58.7

3 84.0 61.0 77.6 61.6

ResNet50 7 82 ms 76.0 46.8 72.4 53.5

3 78.4 53.8 73.6 56.4

* Inference speed is estimated in a single-core test on the Intel Core i7-9700K.

Table 12. Comparison of different encoder architectures. We train the algorithm on MSMT17-merged and single-camera data from
LUPerson (where applicable), and test it on DukeMTMC-reID.

put images increases. It is worth noting that the joint use of
labeled multi-camera and unlabeled single-camera data for
training also has a beneficial effect on the quality of Re-ID
with larger input images. This further confirms the effec-
tiveness of the proposed ReMix method.

Obviously, the use of larger input images can signifi-
cantly increase the computational costs of the algorithm.
This is confirmed by the estimates given in Tab. 11. There-
fore, in our main work, we choose to prioritize method per-
formance and resize all input images to 256⇥ 128.

Separately, we note that according to Tab. 6, ReMix
using 256⇥ 128 input images outperforms others (includ-
ing those methods that use 384⇥ 128 input images) in the
cross-dataset scenario. Thus, our method achieves high ac-
curacy while also being computationally efficient, which is
important for practical applications.

6.4. Encoder Architecture

In [15, 33, 59] it was shown that using combinations of
Batch Normalization and Instance Normalization improves
the generalization ability of neural networks. Therefore,
we compare two encoder architectures in ReMix: ResNet50
[13] and ResNet50-IBN (ResNet50 with IBN-a layers) [33].
ResNet50-IBN differs from ResNet50 only in that the for-
mer uses Instance Normalization in addition to Batch Nor-
malization. The results of our comparison presented in
Tab. 12 also demonstrate the effectiveness of ResNet50 with
IBN-a layers in the cross-dataset scenario.

Moreover, our experiments show that joint training on

a mixture of multi-camera and single-camera data sig-
nificantly improves the accuracy of the algorithm, even
when ResNet50 is used as the encoder and the momen-
tum encoder. Additionally, according to the speed estima-
tion of our algorithm with different encoder architectures,
ResNet50-IBN is slower than ResNet50 by less than 10
ms. Therefore, the use of ResNet50 with IBN-a layers in
our main paper is justified, as this architecture represents a
trade-off between quality and speed.

7. Standard Person Re-ID

In our main paper, we aim to improve the generaliza-
tion ability of person Re-ID methods. Our experiments in
the cross-dataset and multi-source cross-dataset scenarios
show that our ReMix method has a high generalization abil-
ity and outperforms state-of-the-art methods in the general-
izable person Re-ID task (Sec. 4.5). We choose these test
protocols because they are the closest to real-world applica-
tions of Re-ID algorithms. Indeed, in real-world scenarios,
we do not have prior information about the features of cap-
turing environments in an arbitrary scene. Therefore, per-
son Re-ID methods should have a high generalization abil-
ity and work with acceptable accuracy in almost all possible
scenes.

Even so, as we can see from Tab. 13, our method shows
competitive accuracy in the standard person Re-ID task
(when trained and tested on separate splits of the same
dataset). It is worth noting that the other methods in this



Method Reference Market-1501 DukeMTMC-reID MSMT17
Rank1 mAP Rank1 mAP Rank1 mAP

ISP [61] ECCV20 94.2 84.9 86.9 75.6 — —
RGA-SC [54] CVPR20 96.1 88.4 — — 80.3 57.5

FlipReID [31] EUVIP21 95.3 88.5 89.4 79.8 83.3 64.3

CAL [35] ICCV21 94.5 87.0 87.2 76.4 79.5 56.2

CDNet [20] CVPR21 95.1 86.0 88.6 76.8 78.9 54.7

LTReID [45] TMM22 95.9 89.0 90.5 80.4 81.0 58.6

DRL-Net [16] TMM22 94.7 86.9 88.1 76.6 78.4 55.3

Nformer [43] CVPR22 94.7 91.1 89.4 83.5 77.3 59.8

CLIP-ReID [21] AAAI23 95.7 89.8 90.0 80.7 84.4 63.0

AdaSP [60] CVPR23 95.1 89.0 90.6 81.5 84.3 64.7

SOLIDER* [4] CVPR23 96.1 91.6 — — 85.9 67.4

ReMix (w/o s-cam.) Ours 94.7 84.9 87.9 75.8 83.9 62.8
ReMix Ours 96.2 89.8 89.6 79.8 84.8 63.9

* This is a transformer-based method.

Table 13. Comparison of our ReMix method with others in the standard person Re-ID task. In this comparison, we use two versions of
the proposed method: without using single-camera data and with using single-camera data during training. Here, we use the LUPerson
dataset as single-camera data to train ReMix. In this table, bold and underlining fonts suggest the best and the second-best performance,
respectively.

Figure 5. Visualization of activation maps of ReMix on the Market-1501 dataset.

comparison are designed specifically for standard person
Re-ID scenario. At the same time, ReMix is intended as a
method with high generalization ability, which should per-
form well in various scenes. In other words, our ReMix
method is not adapted to work with a specific scene, unlike

competitors. Thus, such a strong performance in this task
clearly indicates the consistency and flexibility of ReMix,
as well as the effectiveness of using single-camera data in
addition to multi-camera data during training.



Hz S-cam. MOT15 MOT17
MOTA IDsw MOTA IDsw

2
7 83.8 70 73.8 249
3 84.6 66 76.9 219

4
7 85.8 105 80.5 333
3 88.0 90 83.1 288

8
7 91.6 120 88.6 375
3 93.2 99 90.6 308

Table 14. Impact of using single-camera data in ReMix in the
tracking task. In these experiments, we use MSMT17-merged and
single-camera data from LUPerson (where applicable) for ReMix
training. The Deep SORT algorithm is used as a tracking method.

8. Tracking

Re-ID methods are often used as components of more
practical applications, such as tracking. For example, in
Deep SORT [48], the Re-ID algorithm is used to bind de-
tections from different frames into tracks. We conduct ex-
periments to study the impact of using single-camera data
in addition to multi-camera data in ReMix not only on the
quality of person Re-ID, but also on tracking.

In this study, we apply our implementation of the Deep
SORT algorithm as a tracking method, using two ver-
sions of the proposed Re-ID method: without using single-
camera data and with using single-camera data during train-
ing. We employ the training parts of the MOT15 [19] and
MOT17 [28] benchmarks as the tracking test datasets (im-
portant: these datasets are not used to train ReMix). Since
the tracking quality depends on many factors (e.g., the ob-
ject detector), we use public detections from MOT15 and
MOT17 to demonstrate the effectiveness of our Re-ID al-
gorithm. In our experiments, we use Multi-Object Tracking
Accuracy (MOTA) [1] and Number of Identity Switches
(IDsw) [23] metrics to evaluate tracking performance. Ad-
ditionally, to demonstrate the effectiveness of ReMix for
binding detections from different frames into tracks, we test
Deep SORT with different frame rates: 2, 4, and 8 Hz.

As can be seen from Tab. 14, the use of single-camera
data in addition to multi-camera data in ReMix has a ben-
eficial effect not only on the quality of person Re-ID, but
also on tracking. With different frame rates on both bench-
marks, the tracking algorithm with the proposed Re-ID
method using single-camera data during training performs
best. This further demonstrates the effectiveness and flexi-
bility of ReMix. It is also important to note that in this study,
we do not aim to achieve state-of-the-art results in the track-
ing task, but rather to demonstrate the effectiveness of our
Re-ID method.
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