
Supplementary

1. Overview

In this section we give an overview on the addressed ma-
terials of the appendix. In section 2 we give implementa-
tion details such as the architecture details, hyper-parameter
settings, CLIP pre-trained model setting, and the losses we
used for training. In section 3, we present an example of a
false negative pseudo-mask that occurs in source-to-target
instance-aware mixing while target-to-source IMix elimi-
nates it. Furthermore, in section 4, we discuss the datasets
that we used in our different benchmark reports in the main
paper. Moreover, in section 5, we explain the different eval-
uation metrics that we report numbers for in the tables of
the paper. In section 6, we present additional qualitative re-
sults for the LIDAPS model for different instance classes
and how they compare to the EDAPS results. In section 7,
we present a plot bar that illustrates the quantative results
for different methods on different benchmarks. In section 8,
we provide the tables from the Ablation Section of the pa-
per with standard deviation included. Lastly, in section 9,
we address the limitations of our work.

2. Implementation Details

Hyper-parameter Settings: We train our method on a sin-
gle NVIDIA GeForce RTX 3090. We use an AdamW opti-
mizer with a learning rate of 6 × 10−5, a weight decay of
0.01, starting with a linear learning rate warmup for 1.5k it-
erations, and afterwards a polynomial decay. Furthermore,
we train for 50k iterations with a batch size of two, consist-
ing of cropped images of size 512x512. We apply a warmup
training phase of 40k iterations and only enable IMix in the
last 10k iterations (fine-tuning phase). Generally, we follow
the hyper-parameter settings from EDAPS except the IMix
confidence threshold and the CLIP loss weight.
Architecture: We use MiT-B5 [12] as our encoder back-
bone (shared by the instance and semantic decoders),
MaskRCNN [3] as instance decoder and DAFormer [4] se-
mantic head as the semantic decoder. For CLIP-based do-
main alignment, we use CLIP [7]1 as the pre-trained text
encoder. We calculate the CLIP encodings of the categories
only once before the start of training. During test time, these
components are not needed and thus don’t add any compu-

1https://huggingface.co/openai/clip-vit-large-patch14

Table 1. Hyperparameter study on the confidence-filtering thresh-
old applied to the pseudo-masks for IMix.

Filter mSQ mRQ mPQ mIoU mAP
0 73.3±0.1 52.1±0.4 40.0±0.4 59.2±0.8 28.7±1.3

0.25 74.0±0.1 54.8±0.3 42.5±0.3 59.3±0.7 36.8±1.3

0.5 74.4±0.5 56.5±0.3 44.0±0.3 59.2±0.7 40.8±1.2

0.75 74.4±0.2 57.6±0.2 44.8±0.2 59.6±0.6 42.6±0.7

1 73.9±0.4 55.0±0.7 42.9±0.6 59.6±0.6 34.4±0.6

tational overhead.
IMix Threshold In Tab. 1, we conduct an hyperparameter
study on the confidence-filtering threshold used for cross-
domain instance mix-sampling. We evaluate a wide range
of thresholds from 0 (no filtering) to 1 (disabling IMix).
While we observe a local maxima at 0.75, we note that the
method is relatively robust against this selection as it con-
tinues to outperform the baseline at a threshold of 0.5 with
+1.9% mPQ and +6.4% mAP improvements.

Thus, we empirically set the IMix confidence threshold
at 0.75 for the settings SYNTHIA → Cityscapes and
Cityscapes → Cityscapes foggy while for SYNTHIA →
Mapillary and Cityscapes → Mapillary we find that the
best threshold is 0.9.

Losses While the mechanisms we propose (i.e., IMix
and CDA) are model agnostic, here we provide detailed
mathematical notations of the all losses we used in our
end-to-end trainable model, LIDAPS. These formulas
have been introduced in prior works [2, 3, 8], nevertheless,
we provide them for the sake of reproducibility and in
order to explain the changes that occur to the ground truth
supervision of some of these losses when training on IMix
augmented images.

Lpan = Lsem + Linst. (1)

As explained in the paper, Eq. 1, a panoptic loss func-
tion consists of two terms; an instance segmentation and a
semantic segmentation loss term. Our instance decoder [3]
consists of an RPN network and a refinement (Ref) net-
work. Each part has its own losses as shown in Eq. 2.

Linst = LRPN + LRef (2)

The RPN loss function [8] has two terms, one for the “ob-
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jectness” (LRPN
Cls ) and another one for the bounding-box (or

region proposal) regression (LRPN
Box ) loss as seen in Eq. 3.

The RPN takes a predefined set of anchor boxes and the
convolution feature map (encoding the input image) as in-
puts and learns to correctly localize objects present in the
image. For each predicted bounding-box, it predicts an “ob-
jectness” score indicating whether that box encompasses
an object instance or not. The RPN box classification loss
LRPN
Cls is a binary cross-entropy loss which is computed be-

tween the predicted objectness score l̂ and the ground truth
objectness label l. A class label “1” denotes that the box
region contains an object instance and a label “0” indicates
that there is no object present within the box region. This
loss encourages the RPN to predict region proposals with
high “objectness” scores which are later used by the box
refinement head for final object detection.

For the bounding-box regression loss LRPN
Box , an L1 loss

is used which is computed between the predicted (q̂) and
ground truth (q) bounding-box coordinate offsets. Impor-
tantly, the regression loss is only computed for positive pre-
dicted boxes [8].

LRPN = LRPN
Cls + LRPN

Box (3)

LRPN
Cls = LBCE

(
l̂, l

)
(4)

LRPN
Box = λRPN

∑
i∈x,y,w,r

L1(q̂i, qi) (5)

We use Q to denote the set of ground truth bounding-
box offset coordinates when training the student network.
As explained in the main paper, LIDAPS is trained on
both the source and mixed domain images containing tar-
get pseudo-instances. While training on the augmented
images (output by IMix), Q represents a union set of the
ground truth source bounding-boxes and confidence-filtered
pseudo-bounding-boxes from a target image as shown in
Eq. 6. Ground truth bounding-boxes of the source im-
age are denoted by qs, while qt denotes pseudo-bounding-
boxes (predicted by the teacher network) on the target im-
age. Here, hi is the confidence score predicted for the i-th
box and the i-th mask by the teacher network.

Q =

{
Qs =

⋃
i q

s
i if Source

Qs ∪
⋃

i 1[hi > τ ] qti if IMix
(6)

The refinement network consists of a box-head and a
mask-head following FastRCNN [2]. As seen in Eq. 7, the
box-head is trained using a box classification loss LRef

Cls and
a box regression loss LRef

Box, while the mask-head has a mask
segmentation loss LRef

Mask.

LRef = LRef
Cls + LRef

Box + LRef
Mask (7)

The box-head takes as inputs the RoIAlign [3] fea-
tures and the region proposals output by the RPN network,
and predicts refined bounding-boxes and their classifica-
tion scores. The classification scores are the softmax prob-
ability scores for all the thing classes plus a background
class(Cthings+1).

Similar to the RPN, the box-head has a box classifica-
tion loss LRef

Cls and a box regression loss LRef
Box. The box

classification loss is computed between predicted per-class
probabilities Pcl and the ground truth class label u ∈ U for
the predicted box as shown in Eq. 8. Unlike RPN, where the
box classification loss is a binary cross-entropy loss, LRef

Cls

is a categorical cross-entropy loss for multi-class classifica-
tion.

LRef
Cls = LCE(Pcl, u) (8)

The box regression loss is computed between the pre-
dicted bounding-box v̂u,i and the ground truth bounding-
box vi as shown in Eq. 9. The predicted bounding-box v̂c,i
by the box-head is for the class c ∈ Cthings. Having pre-
dictions for all classes mitigates the competition between
the classes.

LRef
Box = λRef

∑
i∈x,y,w,r

L1(v̂u,i, vi) (9)

Similar to RPN training, the box-head is trained on both
source and target domain bounding-boxes Q. While training
on source images, we use the ground truth source bounding-
boxes, and for training on augmented images (output by
IMix), we use a union set of the ground truth source and
pseudo bounding-boxes as in Eq. 6.

U denotes the ground-truth bounding-box class labels.
When training the student network on the source domain
images, we use the source ground-truth labels Us and while
training on the augmented images generated by IMix, U
represents a union set of ground truth source bounding
boxes and confidence-filtered pseudo bounding-box class
labels as shown in Eq. 10.

U =

{
Us =

⋃
i u

s
i if Source

Us ∪
⋃

i 1[hi > τ ] ut
i if IMix

(10)

For the RPN and box refinement head losses, we set the
loss weights λRPN and λRef to 1.0.

The mask-head predicts Cthings masks of dimension
w × h for each of the RoIs. Each predicted mask, m̂c,
is for an RoI and a specific class. This mitigates the
competition in between the classes. Each predicted mask is
associated to a ground truth mask m ∈ Masks according
to maximum IoU. When training with IMix, Masks
contains confidence-filtered pseudo-masks mt from the
target as well as ground truth masks from the source ms as



shown in Eq. 11.

Masks =

{
Maskss =

⋃
i m

s
i if Source

Maskss ∪
⋃

i 1[hi > τ ] mt
i if IMix

(11)
Eq. 12 indicates the binary cross-entropy loss computed

between the predicted m̂ and ground truth masks m, where
u ∈ Cthings denotes the ground truth class label for the
predicted mask.

1

w × h

∑
1≤i,j≤h

mi,j log(m̂u,i,j)+(1−mi,j) log(1−m̂u,i,j).

(12)
Before training with IMix, we first pass the target images

through the instance decoder of the teacher network θinst in
order to gather the predictions which serve as pseudo-class
labels, pseudo-masks, pseudo-bounding-boxes for the stu-
dent network training. The instance decoder of the teacher
network provides per-class probabilities for each of the re-
gions of interest. We use the class with the highest proba-
bility as the pseudo-label for the i-th ROI which is shown
below:

ytinsti =

[
argmax

c′
(θinst(x

(t)))i

]
(13)

The semantic loss on the source domain is explained in
Eq. 14 which defines a categorical cross-entropy loss on the
predicted class probability for each pixel.

Ls
sem(ŷ

s
sem, y

s
sem) = −

∑
i,j,c

(yssem log(ŷssem))i,j,c (14)

Following [10], the self-supervised semantic loss applied
to the semantic-aware mixed image [6] is shown in Eq. 15.
The augmented or mixed image generated using the Class-
Mix [6] contains pixels from both the source and the target
domain images. For the source pixels, we compute the cate-
gorical cross-entropy loss between the predicted and ground
truth semantic class labels. For the target pixels, we com-
pute a weighted categorical cross-entropy loss as it takes
into account the confidence of the pseudo-semantic class
labels predicted by the teacher network.

Thus, kt(i,j) defines the per-pixel confidence score for ev-
ery pseudo-label predicted by the teacher network. ytsem
is the per-pixel pseudo-label as shown in Eq. 16 where
θsem(the semantic decoder of the teacher) predicts per-
pixel-class probabilities.

Lss
sem(ˆ̃ysem, ỹsem) =


Ls
sem(ˆ̃ysem, y

s
sem),

if M(i,j,c)
sem = 1,

−
∑

kt(i,j)

(
ytsem log(ˆ̃ysem)

)
(i,j,c)

,

otherwise
(15)

ytsem =

[
argmax

c′
(θsem(x

(t)))i,j

]
(16)

EDAPS*: This baseline follows the same setting as
EDAPS [10] except that it does not include the features
distance regularizor (FD) that EDAPS applies during train-
ing. FD uses ImageNet features as an anchor in order to
hinder the learned encoder from forgetting the knowledge
it starts out with when initialized with a pre-trained Im-
ageNet encoder. The regularizor is explained in Eq. 17.
Noteworthy is that FD is applied only on source images in
areas corresponding to thing classes. In Table 3 we show
how the inclusion of FD hinders the performance of our
method and thus explains why this component was removed
from our experiments. We speculate that this is because the
embedding spaces of ImageNet and CLIP are not aligned,
therefore, aligning with both gives rise to a drop in perfor-
mance. Additionally, EDAPS* is trained for 50k iterations
instead of 40k which is the duration of training reported
for EDAPS. In Table 2, we compare EDAPS with LIDPAS,
both trained for 50k iterations. We can see that LIDAPS
persists on beating EDAPS on three different benchmarks.

LFD = ∥EncImgNet(x
s)− Encθ(x

s)∥ (17)

Table 2. Ablation study on EDAPS and LIDAPS in an equalized
setting where EDAPS is trained for 50k iterations on three differ-
ent benchmarks.

Method mSQ mRQ mPQ mIoU mAP
SYNTHIA → Cityscapes

EDAPS 72.4±0.4 53.2±1.0 40.8±0.9 57.5±0.7 33.7±0.6

LIDAPS 74.4±0.28 57.6±0.294 44.8±0.2 59.6±0.6 42.6±0.7

SYNTHIA → Mapillary Vistas
EDAPS 72.9±0.4 46.1±0.2 36.6±0.2 55.4±4.1 32.8±0.3

LIDAPS 73.9±1.9 47.7±0.2 38.0±0.2 58.8±0.5 38.7±0.2

Cityscapes → Cityscapes foggy
EDAPS 79.2±0.1 71.2±0.0 57.3±0.2 83.0±0.6 60.4±0.4

LIDAPS 80.2±0.1 73.2±0.6 59.6±0.6 87.1±0.7 65.3±0.6

Table 3. Ablation study on the FD component. We include feature
distance (FD) in our proposed LIDPAS model (LIDAPSFD) and
compare its performance to LIDAPS.

Method mSQ mRQ mPQ mIoU mAP
LIDAPSFD 74.0±0.3 56.1±1.3 43.7±0.9 58.6±0.8 40.3±0.9

LIDAPS 74.4±0.28 57.6±0.294 44.8±0.2 59.6±0.6 42.6±0.7



3. False Negatives

As explained in the paper, when instance-aware mixing
is done from source to target, exhaustive pseudo-masks for
the target instances are not guaranteed. In Fig. 1, we show
an example where in (c) confidence-filtered target instances
are pasted onto the source image while in (d) all ground
truth source instances are pasted on to the target image.
In Fig. 1(c), we can see that the target instances all have
a pseudo-mask while in Fig. 1(d), the encircled instance
(the truck) in red does not have a corresponding pseudo-
mask which is indicative of a false negative. When going
from target to source, only the instances with a correspond-
ing pseudo-mask are copy and pasted. Thus, inherently, all
of the pasted target instances have a corresponding pseudo-
mask. On the other hand, when remaining in the target im-
age, target instances with absent pseudo-masks remain.

4. Datasets

We evaluate our method on the popular panoptic UDA
benchmarks. For synthetic-to-real adaptation, we use SYN-
THIA [9] as the source domain which contains 9,400 syn-
thetic images. For the target domain, we use the Mapillary
Vistas [5] dataset and Cityscapes [1]. Cityscapes contains
2,975 training images and 500 validation images, while
Mapillary Vistas contains 18,000 training images and 2,000
validation images. For real-to-real adaptation, we use two
different benchmarks. First, we train with Cityscapes as the
source and Mapillary Vistas as the target domain, and sec-
ond, we train with Cityscapes as the source and the adverse
weather dataset Foggy Cityscapes [11] as the target domain.

5. Evaluation Metrics

We report the mean panoptic quality (mPQ) for panop-
tic segmentation, which measures both the semantic qual-
ity (SQ) and the recognition quality (RQ). To highlight the
individual task performances, we further report the mIoU
for semantic segmentation over 20 classes, and mAP for
instance segmentation over 6 thing classes. All reported
values are the averaged scores over three runs with three
different seeds (1, 2, 3).

6. Additional Qualitative Results

In this section, we provide additional qualitative panop-
tic segmentation results in Fig. 2.

7. Additional Qualitative Results

In Fig. 3, we display the quantative re-
sults of LIDAPS and other UDA panoptic meth-
ods for different benchmarks on a bar plot.

Figure 3. The two main contributions, IMix and CDA help in
improving the UDA panoptic (mPQ) over the SOTA on four
UDA panoptic segmentation benchmarks S→C: SYNTHIA
to Cityscapes, C→F: Cityscapes to Foggy Cityscapes, S→M:
SYNTHIA to Mapillary and C→M: Cityscapes to Mapillary.

8. Ablation studies including Standard Devia-
tions

In this section, we provide Table 4 and Table 5 for the
ablation studies of the main paper where we additionally
include the standard deviation of the results each conducted
for three rounds.

9. Limitations
Depending on the source and target domain, the thresh-

old for pseudo-mask confidence filtering needs to be man-
ually found with experiments. Thus, we show that this
threshold is different on different benchmarks. In future
work, we will explore the prediction of the threshold us-
ing a jointly trained neural network. Furthermore, during
the refinement phase where IMix is enabled (last 10k iter-
ations), we are adding one forward pass and one backward
pass to each iteration which increases the runtime.



(a) Source (b) Target (c) IMix target to source (d) IMix source to target

Figure 1. When using IMix to paste source instances from source to target (c), exhaustive pseudo-masks for the target instances is not
guaranteed. For instance, in (d) the truck has no pseudo-mask. In (c), this exhaustiveness is guaranteed because only target instances with
predicted pseudo-masks are pasted onto the source image. Thus, training on samples mixed from target to source allows the model to learn
on supervised sets with no false negative examples.

Figure 2. Additional qualitative results on SYNTHIA → Cityscape UDA benchmark comparing EDAPS [10] to our proposed LIDAPS.
Our proposed LIDAPS model predicts improved semantic and instance segmentation for several classes including “motor-bike” (a), “rider”
(b), “person” (c) and “car” (d,e).

Table 4. Ablation study on proposed modules. Starting from a baseline EDAPS*, we individually introduce our instance-aware cross-
domain mixing (IMix) and CLIP-based domain alignment (CDA). Each experiment is run three times.

EDAPS∗ IMix CDA mSQ mRQ mPQ mIoU mAP
✓ 72.3±0.2 53.3±0.8 41.0±0.4 58.0±0.2 34.1±1.0

✓ ✓ 73.0±0.0 54.7±0.8 42.3±0.6 57.7±0.3 39.5±2.3

✓ ✓ 73.9±0.3 55.0±0.6 42.9±0.6 59.6±0.6 34.4±0.6

✓ ✓ ✓ 74.4±0.2 57.6±0.2 44.8±0.2 59.6±0.6 42.6±0.7



Table 5. Ablation study on mixing strategy for panoptic segmentation comparing (i) the mixing direction when applying IMix, (ii) the
effects of ClassMix when applied from target-to-source as opposed to source-to-target. The baseline is EDAPS*+CDA. Each experiment
is run three times. S stands for source while T stands for target.

Method Copy Paste mSQ mRQ mPQ mIoU mAP
Baseline - - 73.9±0.3 55.0±0.6 42.9±0.6 59.6±0.6 34.4±0.6

(i) + IMix S T 62.0±3.3 37.6±0.6 29.3±0.5 56.2±0.7 1.9±1.9

T S 74.4±0.2 57.6±0.2 44.8±0.2 59.6±0.6 42.6±1.7

(ii) + ClassMix [6] T S 73.5±0.2 53.9±0.7 42.1±0.6 58.6±0.8 34.8±0.9
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