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Appendix A. Experiments

Appendix A.1. Datasets and experiment setting

The quantitative and qualitative evaluation of our Tex2

on describing texture is on the dataset called DTD2 [7].
DTD2 manually annotates the images in the DTD [4]
dataset with the visual attributes. Overall, DTD2 contains
5369 images and 24697 descriptions and provides the offi-
cial train, val, and test splits. Following [7] [8], we examine
our performances on its test set, and use Mean Average Pre-
cision (MAP), Mean Reciprocal Rank (MRR), Precision at
N (P@N ), and Recall at N (R@N ) as evaluation metrics.

The performances of texture recognition are evaluated
on five representative texture/material benchmark datasets.
They are FMD [6], DTD [4], MINC-2500 [1], GTOS [10],
and GTOS-M [9]. (1) Flickr Material Database (FMD) 1

consists of ten common material categories, each of them
contains 100 images. (2) Describable Texture Database
(DTD)2 [4] contains 47 texture categories, each of which
is a texture attribute. For each category, they collected 120
images; (3) Materials in Context Database 2500 (MINC-
2500) [1] 3 is a large-scale and open dataset which contains
23 real-world material categories. Each category contains
2500 images. (4) Ground Terrain in Outdoor Scenes Dataset
(GTOS) [11] has 40 outdoor material categories. The au-
thors state that since the ”snow” class contains only 2 sam-
ples, they omit it from their experiments. Thus, GTOS con-
tains 39 categories with a total of 32334 images; (5) GTOS-
Mobile [9] is the extended version of the GTOS dataset.
Their images are collected with a mobile phone. In to-
tal, GTOS-Mobile contains 31 categories. DTD, MINC-
2500, GTOS, and GTOS-Mobile datasets provided their of-
ficial train-test splits. As for FMD, we used the same splits
as [12]. To compare with recent state-of-the-art methods

1FMD:https : / / people . csail . mit . edu / celiu /
CVPR2010/FMD/

2DTD:https://www.robots.ox.ac.uk/˜vgg/data/dtd/
download/dtd-r1.0.1.tar.gz

3MINC-2500: http://opensurfaces.cs.cornell.edu/
publications/minc/

[13] [3], for all five datasets, we record the accuracy of ev-
ery split, and report the accuracy mean± s.t.d. of all splits
based on 5-run statistics (Each run uses different random
seed).

All experiments were implemented with PyTorch and
ran on one NVIDIA v100 GPU. For DTD2, DTD, MINC-
2500, GTOS, and GTOS-Mobile, We used SGD optimizer
with a learning rate of 0.01 for all learnable modules, mo-
mentum of 0.9, weight decay of 1×10−4, batch size of 128.
Our model is trained for 10 epochs with a cosine annealing
learning rate scheduler. We use three as scaling factor s and
four as α for these three datasets. We choose the hyper-
parameters according to the validation set of MINC-2500
and directly apply these hyperparameters to the other three
datasets. As for FMD, the data volume is largely differ-
ent from the datasets mentioned above. So we separate 10
images per category from the training set as the validation
set and then select the hyperparameters according to it. In
this case, the learning rate of ResNet50 is 0.0001 and the
remaining learnable module is 0.001, the training epochs
become 20, the batch size is 16, the scaling factor s = 2,
and α = 1.

ResNet50 was initialized with ImageNet-pretrained
models. CLIP model was initialized with pretrained model
weights downloaded from their official website 4 and kept
frozen during the training process in all our experiments.
The BERT model used here is called ’bert-base-uncased’,
and was initialized with pre-trained weights downloaded
from Hugging Face website 5, and kept it frozen like the
CLIP model. For image preprocessing on the FMD, DTD,
and MINC-2500 datasets, we follow the same preprocess-
ing procedures as CLIP models. This involves resizing im-
ages to 224 × 224, center cropping images to 224 × 224,
and then normalizing the images. Since the images from
FMD, DTD and MINC-2500 are captured from the every-
day scenarios similar to the training images used for CLIP,
this preprocessing approach is appropriate. However, the

4CLIP: https://github.com/OpenAI/CLIP
5’bert-base-uncased’: https://huggingface.co/bert-

base-uncased

https://people.csail.mit.edu/celiu/CVPR2010/FMD/
https://people.csail.mit.edu/celiu/CVPR2010/FMD/
https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz
https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz
http://opensurfaces.cs.cornell.edu/publications/minc/
http://opensurfaces.cs.cornell.edu/publications/minc/
https://github.com/OpenAI/CLIP
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased


Table A. The impact of texture description on the accuracy of texture recognition

Image Encoder Text Encoder 0.0 0.1 0.2 0.3 0.4 0.5

Recog Res50 – 74.09 71.09 67.98 62.19 54.55 44.04

Recog & Desc Res50 CLIP 74.21 71.39 67.39 62.58 54.45 44.73
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Figure A. Top-4 probability of pg .

Figure B. Examples of generated texture descriptions in DTD
dataset

Figure C. Examples of generated texture descriptions in MINC-
2500 dataset

GTOS and GTOS-Mobile datasets, consisting of ground ter-
rain images, necessitate a slightly different preprocessing
procedure due to their distinct characteristics.

For GTOS, images are resized to 224 × 224, center
cropped to 224 × 224, and then normalized based on pa-
rameters specified in the GitHub repository of DEP [9].
For GTOS-Mobile, our preprocessing procedure takes cues
from both DEP [9] and CLIP [5]. During training, images
are resized to 224 × 224, center cropped to 224 × 224,
applied color jitter, added lighting noise, and normalized
based on the parameters used in CLIP. During testing, we
adopt the same preprocessing operations as CLIP on im-
ages.

(a) (b)

Figure D. (A) Original image; (B) Randomly masked image
(masking ratio=0.5))

Appendix A.2. Analysis of ranked and scaled oper-
ations

According to Eq. (a), LKL imposes a greater penalty
when the difference between pg and pq is more pronounced.

∂LKL

∂pq
=

∂
∑

j p
g log pg

pq

∂pq
= −

∑
j

pg

pq
(a)

We show top-4 values of pg = softmax(G(·)) for ‘banded’
category in DTD in Fig. A. Go is the cosine similarity
between the text embeddings of category and lexicon, as
displayed in Eq. 1 of the main manuscript. It is cal-
culated based on the text embeddings extracted by CLIP
(‘ViT-B/32’) using prompt ‘An image of {·} texture.’ with
scale=2, rank=3. Due to subtle differences of textures
and their attributes, pg = softmax(Go) typically appears
as an almost flat distribution. It shows that applying the
ranked operation makes pg = softmax(Gr) steeper than
pg = softmax(Gs).

Tab. 2 in the main manuscript also demonstrates that
the ranked outperforms the scaled. This confirms that a
sharper pg demands LKL impose a greater penalty on the
most relevant visual attributes identified by pg , resulting
in improved performance in phrase retrieval.

Appendix A.3. Texture description generated dur-
ing texture recognition

In this section, we delve into the texture descriptions
generated by the WTDG module during the performance
evaluation of texture recognition on the DTD and MINC-
2500 dataset. The examples illustrated in Fig. B and Fig. C
are the output of the model we refer to as Tex2

early, uti-
lizing CLIP with ”VIT-L/14” encoder for text encoder and
ResNet50 for image encoder. Our WTDG successfully
identifies the ground-truth category as the top-1 phrase at
the most cases, with all subsequent phrases semantically



(a) (b)

Figure E. (A) t-SNE plot of Recog trained classifiers; (B) t-SNE plot of Recog & Desc trained classifiers

relevant to the input image from the employed lexicon L.
Similar to the observations made in Section 4.1, our WTDG
excels at selecting the most relevant phrases from the given
lexicon, specifically the ground-truth category and other se-
mantically relevant texture attributes. This efficacy under-
lines the capability of our proposed Tex2 framework to not
only generate accurate texture descriptions but also concur-
rently recognize the correct categories simultaneously.

Appendix A.4. The effect of texture description on
texture recognition

In this section, we analyzed if texture recognition per-
formance will be affected when introducing an additional
texture description task into our framework. First, we re-
move all the elements related to the texture description task
i.e., text encoder, WTDG, and image-text fusion to compare
with our proposed Tex2 in Tab. A. According to this ta-
ble, incorporating an extra task, the performance of texture
recognition is enhanced by 0.1%. It means that describing
textures cannot harm the texture recognition task but assists
it in obtaining better performances.

To verify this statement, we checked the semantic rela-
tionship of their trained classifier weights by plotting their
t-SNE plot in Fig. E. According to Fig. E(A), texture recog-
nition trained classifiers tend to make visually similar cate-
gories locate closer like ”knitted” with ”braided” and ”mat-
ted”, and ”meshed” with ”grid”. However, in Fig. E(B) by
training these two tasks together, ”knitted” is not only lo-
cated close to ”braided” but also ”woven”, and ”meshed”
closer to ”perforated”, which consider both appearance and
semantic meanings. We can conclude that the rough seman-
tic relationship learned by SR-KL can be distilled into the
image encoder and the classifier, which will benefit texture
recognition eventually.

When adding masking to the testing images with dif-
ferent area ratios, we find that the two-task trained model
has relatively better robustness to retain almost the same or

better texture recognition performance with different lev-
els of image degradation i.e., image masking. When we
masked 50% image, Tex2 can perform better by around
0.7%. Fig. D shows the original image and the randomly
masked image.

Appendix A.5. Discussion on limitations

The limitations of our proposed method can be discussed
in the context of two tasks:
(1) Limitation on texture description: The pseudo-target
in the proposed SR-KL loss ensures that at least the top-
5 retrieved phrases belong to the ground-truth texture de-
scriptions, as reflected in the promising MRR, P@5, and
R@5 results. However, the lower MAP score indicates that
WTDG struggles to correctly rank the remaining phrases.
The possible reasons are: (a) 71.15% of images in the
DTD2 dataset have their GT category present in the GT
texture description. For these images, WTDG effectively
retrieves the correct category, resulting in a high MRR. (b)
However, the remaining relevant phrases identified by our
pseudo-targets may not fully align with the GT descriptions.
It is also worth noting, as shown in Fig. 6, that in some cases
the GT descriptions do not include all relevant phrases, and
some phrases retrieved by WTDG, while highly relevant to
the texture image, were not included in the GT descriptions.
(2) Limitation on texture recognition: The performance of
Tex2 is affected by the distinct backgrounds and contexts
across different datasets. While the pre-trained text encoder
effectively provides meaningful semantic relationship guid-
ance for real-world material classes, it is less effective for
domain-specific classes. As a result, Tex2 performs very
well on DTD and MINC-2500 but less effectively on GTOS
and GTOS-Mobile. These two limitation will be addressed
in our future work.



Appendix A.6. Texture Lexicon

Following is the texture lexicon [2] used in our Tex2 be-
low:
{’asymmetrical’, ’banded’, ’barred’, ’spattered’, ’blem-
ished’, ’blotchy’, ’braided’, ’bubbly’, ’bumpy’, ’chequred’,
’clotted’, ’cloudy’, ’coarse’, ’cobweb’, ’coilded’, ’com-
plex’, ’corkscrew’, ’corrugated’, ’cracked’, ’creased’, ’crin-
kled’, ’crosshatched’, ’crows’, ’crumpled’, ’crystalline’,
’curly’, ’cyclical’, ’dense’, ’discontinous’, ’disordered’,
’dotted’, ’entwine’, ’facetted’, ’fibrous’, ’filigree’, ’fine’,
’flecked’, ’flowing’, ’fractured’, ’fragmented’, ’freckled’,
’fretted’, ’frilly’, ’frothy’, ’furrowed’, ’gauzy’, ’gouged’,
’granular’, ’gravelly’, ’grid’, ’grille’, ’gritty’, ’grooved’,
’harmonious’, ’holey’, ’honeycombed’, ’indefinite’, ’in-
terlaced’, ’intertwined’, ’irregular’, ’jumbled’, ’kinky’,
’knitted’, ’knotty’, ’lacelike’, ’lattice’, ’lined’, ’marbled’,
’matted’, ’meshed’, ’messy’, ’mottled’, ’muddy’, ’net-
like’, ’nonuniform’, ’oriented’, ’patchy’, ’patterned’, ’peb-
bly’, ’perforated’, ’periodic’, ’pimpled’, ’pitted’, ’pleated’,
’pockmarked’, ’polka’, ’porous’, ’potholed’, ’powdery’,
’random’, ’regular’, ’repetitive’, ’rhythmic’, ’ribbed’, ’rid-
dled’, ’ridged’, ’rippled’, ’rough’, ’rocky’, ’ruled’, ’rum-
pled’, ’sandy’, ’scalloped’, ’scaly’, ’scarred’, ’scram-
bled’, ’scratched’, ’simple’, ’sinewy’, ’smeared’, ’smooth’,
’smudged’, ’speckled’, ’spiralled’, ’spongy’, ’spotted’,
’sprinkled’, ’stained’, ’stratified’, ’streaked’, ’striated’,
’stringy’, ’striped’, ’studded’, ’swirly’, ’tangled’, ’uni-
form’, ’veined’, ’waffled’, ’wavy’, ’webbed’, ’well’,
’whirly’, ’winding’, ’wiry’, ’wizened’, ’woven’, ’wrin-
kled’, ’zigzag’}
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