
DiffuseKronA: A Parameter Efficient Fine-tuning Method for
Personalized Diffusion Models

Supplementary Material

Project Page: https://diffusekrona.github.io/

Table of Contents

1 . Background 1

2 . Datasets Descriptions 4

3 . Evaluation Metrics 4

4 . DiffuseKronA Ablations Study 5
4.1. Choice of modules to fine-tune the model 5
4.2. Effect of Kronecker Factors 6
4.3. Effect of learning rate 10
4.4. Effect of training steps 11
4.5. Effect of the number of training images . 12

4.5.1 One shot image generation 12
4.6. Effect of Inference Hyperparameters . . . 15

5 . Detailed study on LoRA-DreamBooth vs Dif-
fuseKronA 15
5.1. Fidelity & Color Distribution 15
5.2. Text Alignment 15
5.3. Complex Input images and Prompts . . . 15
5.4. Qualitative and Quantitative comparison . 15

6 . Comparison with other Low-Rank Decompo-
sition methods 15

7 . Comparison with state-of-the-arts 29

8 . Comparison with tuning-free methods 29

9 . Practical Implications 29

1. Background

Primarily in 1998, the practical implications of the Kro-
necker product were introduced in [17] for the task of image
restoration. This study presented a flexible preconditioning
approach based on Kronecker product and singular value
decomposition (SVD) approximations. The approach can
be used with a variety of boundary conditions, depending
on what is most appropriate for the specific deblurring ap-
plication. In the realm of parameter-efficient fine-tuning
(PEFT) of large-scale models in deep learning, several lit-
erature studies [4, 11, 24, 25] have explored the efficacy

of Kronecker products, illustrating their applications across
diverse domains.

In context, COMPACTER [6] was the first line of work
that proposes a method for fine-tuning large-scale language
models with a better trade-off between task performance
and the number of trainable parameters than prior work. It
builds on top of ideas from adapters [12], low-rank opti-
mization [14] (by leveraging Kronecker products), and pa-
rameterized hypercomplex multiplication layers [28]. Kro-
neckerBERT [24] significantly compressed Pre-trained Lan-
guage Models (PLMs) through Kronecker decomposition
and knowledge distillation. It leveraged Kronecker decom-
position to compress the embedding layer and the linear
mappings in the multi-head attention, and the feed-forward
network modules in the Transformer layers within BERT [3]
model. The model outperforms state-of-the-art compres-
sion methods on the GLUE and SQuAD benchmarks. In
a similar line of work, KronA [4] proposed a Kronecker
product-based adapter module for efficient fine-tuning of
Transformer-based PLMs (T5 [21]) methods on the GLUE
benchmark.

**

* *

*

* *

*

*

*

*

*

*

*

*

*

Figure 1. Demonstrating the functioning of the Kronecker product.

Apart from the efficient fine-tuning of PLMs, studies
also shed some light on applying Kronecher products in the
compression of convolution neural networks (CNNs) and
vision transformers (ViTs). For instance, in [8], the authors
compressed CNNs through generalized Kronecker product
decomposition (GKPD) with a fundamental objective to re-
duce both memory usage and the required floating-point
operations for convolutional layers in CNNs. This approach
offers a plug-and-play module that can be effortlessly incor-
porated as a substitute for any convolutional layer, offering
a convenient and adaptable solution. Recently proposed,
KAdaptation [11] studies parameter-efficient model adapta-

1

https://diffusekrona.github.io/

Input Images Generated Images by DiffuseKronA

“A [V] person”

“A [V] person”
dressed in a Banarasi

Silk Sherwani
in a chef's outfit,

cooking in a kitchen
standing under the pink

blossoms of a cherry tree

taking a shot in
basketball

watercolour painting,
mountains in background

in an astronaut suit
in a spaceship

in a Nike outfit with a
jacket, t-shirt, and a

sporty cap

in a Classic Double-
Breasted Suit with
checkered pattern

standing under the pink
blossoms of a cherry

tree

dressed as a knight,
standing in a

medieval castle

selfie in front of
Eiffel Tower

showcasing a Classic
Suit from Ralph

Lauren

“A [V] anime”

in a cyberpunk rebellion,
leading a group fighting

integrated into her
robotic parts.”

working as an engineer
looking like a captain

as ice sculptures
inside a glass

in traditional Japanese
attire like goddess of

water

“A [V] anime”

playing with a puppy in
a grassy field

a space explorer,
wearing a high-tech

spacesuit

riding a bicycle through
a quaint town

as a chef, preparing
dishes in a busy

kitchen

at a summer fireworks
festival

sitting on a swing under
a cherry blossom tree

as a guardian of
underwater connecting

dimensions

Input Images Generated Images by DiffuseKronA

Figure 2. The results for the human face and anime characters generation highlight our method’s endless application in creating portraits,
animes, and avatars.

A stunt [V] car flying
through the air

A [V] car on beach A [V] car on rain-
soaked streets

A [V] car in high
speed, like cinematic

effect

A [V] car on crowded
street

A [V] dusty car
showcasing its charm

on streets of Italy

A [V] car in pillars of
heaven

A [V] car submerged
in water”

A [V] car in vibrant
graffiti art theme.

A [V] silver car in front
of Eiffel Tower

A [V] car of pink colour

A [V] car with open
sunroof in mountains

A [V] car with ghostly
effects with ethereal

effects.

A [V] car integrated in
neon-lit cyberpunk

cityscape

A [V] shiny car of
golden colour

A [V] car with
mountains in
background

A [V] car painting
blending from swarm

of butterflies.

A [V] car in wheat field

Input Images Generated Images by DiffuseKronA

“A [V] car”

Figure 3. Results for car modifications and showcasing our method’s potential application in the Automobile industry.

Figure 4. A collection of sample images representing all individual subjects involved in this study. Our collected subjects are highlighted in
green.

tion strategies for ViTs on the image classification task. It
formulates efficient model adaptation as a subspace training
problem via Kronecker Adaptation (KAdaptation) and per-
forms a comprehensive benchmarking over different efficient
adaptation methods.

On the other hand, authors of [25] compressed RNNs
for resource-constrained environments (e.g. IOT devices)
using Kronecker product (KP) by 15-38x with minimal ac-
curacy loss and by quantizing the resulting models to 8 bits,
the compression factor is further pushed to 50x. In [26],
RNNs are compressed based on a novel Kronecker CAN-
DECOMP/PARAFAC (KCP) decomposition, derived from

Kronecker tensor (KT) decomposition, by proposing two
fast algorithms of multiplication between the input and the
tensor-decomposed weight.
Besides all of the above, Kronecker decomposition is also
being applied for GPT compression [5] which attempts to
compress the linear mappings within the GPT-2 model. The
proposed model, Kronecker GPT-2 (KnGPT2) is initialized
based on the Kronecker decomposed version of the GPT-2
model. Subsequently, it undergoes a very light pre-training
on only a small portion of the training data with intermediate
layer knowledge distillation (ILKD).
From the aforementioned literature study, we have witnessed

the efficacy of Kronecker products for the task of model
compression within various domains including NLP, RNN,
CNN, ViT, and GPT space. Consequently, it has sparked
considerable interest in exploring its impact on Generative
models.

2. Datasets Descriptions
We have incorporated a total of 25 datasets from Dream-

Booth [22], encompassing images of backpacks, dogs, cats,
and stuffed animals. Additionally, we integrated 7 datasets
from custom diffusion [13] to introduce variety in our exper-
imentation. To assess our model’s ability to capture spatial
features on faces, we curated a dataset consisting of 4 to 7
images each of 4 humans, captured from different angles. To
further challenge our model against complex input images
and text prompts, we compiled a dataset featuring 6 anime
images from various sources. All datasets are categorized
into four groups: living animals, non-living objects, anime,
and human faces. Furthermore, the keywords utilized for
fine-tuning the model remain consistent with those specified
in the original papers. In Fig. 4, we present a sample image
for all the considered subjects used in this study.
Image Attribution. Our collected datasets are taken from
the following resources:

• Rolls Royce:

– https : / / www . peakpx . com / en / hd -
wallpaper-desktop-pxxec

– https://4kwallpapers.com/cars/rolls-
royce- ghost- 2020/white- background-
5k-8k-2554.html

– https : / / www . cardekho . com / Rolls -
Royce / Rolls - Royce _ Ghost / pictures #
leadForm

– https : / / www . rolls - roycemotorcars .
com / en _ US / showroom / ghost - digital -
brochure.html

• Hugging Face: https://huggingface.co/brand

• Nami:

– http://m.gettywallpapers.com/nami-
pfps-2/

– https : / / tensor . art / models /
616615209278282245

– https : / / www . facebook . com /
NamiHotandCute/?locale=bs_BA

– https : / / k . sina . cn / article _
1655152542_p62a79f9e02700nhhe.html

• Kiriko:

– https : / / in . pinterest . com / pin /
306948530865002366/

– https://encrypted-tbn2.gstatic.com/
images ? q = tbn : ANd9GcSDSk98Uw3O2XW _
RFC1jD_Kmw70JWU459euVYtU9nn1CpzPDcwS

– https://comisc.theothertentacle.com/
overwatch+kiriko+fanart

– https://www.1999.co.jp/eng/11030018

• Shoko Komi:

– https://wallpaperforu.com/tag/komi-
shouko-wallpaper/page/2/

– https : / / www . tiktok . com / @anime _
geek00/video/7304798157894995243

– https : / / wall . alphacoders . com / big .
php?i=1305702

– http://m.gettywallpapers.com/komi-
can-t-communicate-wallpapers/

• Kakashi Hatake:

– https://www.ranker.com/list/best-
kakashi-hatake-quotes/ranker-anime?
page=2;

– https : / / www . wallpaperflare . com /
search?wallpaper=Hatake+Kakashi

– https : / / www . peakpx . com / en / hd -
wallpaper-desktop-kiptm

– https : / / in . pinterest . com / pin /
584060645404620659/

3. Evaluation Metrics

We utilize metrics introduced in DreamBooth [22] for
evaluation: DINO and CLIP-I scores measure subject fi-
delity, while CLIP-T assesses image-text alignment. The
DINO score is the normalized pairwise cosine similarity
between the ViT-S/16 DINO embeddings of the gener-
ated and input (real) images. Similarly, the CLIP-I score
is the normalized pairwise CLIP ViT-B/32 image em-
beddings of the generated and input images. Meanwhile,
the CLIP-T score computes the normalized cosine similarity
between the given text prompt and generated image CLIP
embeddings.

Let’s denote the pre-trained CLIP Image encoder as I,
the CLIP text encoder as T , and the DINO model as V . We
measure cosine similarity between two embeddings x and
y as sim(x, y) = x.y

||x||·||y|| . Given two sets of images, we
represent the input image set as R = {Ri}ni=1 and generated
image set as G = {Gi}mi=1 corresponding to the prompt
set P = {Pi}mi=1, where m and n represents the number
of generated and input images, respectively and R,G ∈
R3×H×W (H and W is the height and width of the image).
Then, CLIP-I image-to-image and CLIP-T text-to-image

https://www.peakpx.com/en/hd-wallpaper-desktop-pxxec
https://www.peakpx.com/en/hd-wallpaper-desktop-pxxec
https://4kwallpapers.com/cars/rolls-royce-ghost-2020/white-background-5k-8k-2554.html
https://4kwallpapers.com/cars/rolls-royce-ghost-2020/white-background-5k-8k-2554.html
https://4kwallpapers.com/cars/rolls-royce-ghost-2020/white-background-5k-8k-2554.html
https://www.cardekho.com/Rolls-Royce/Rolls-Royce_Ghost/pictures#leadForm
https://www.cardekho.com/Rolls-Royce/Rolls-Royce_Ghost/pictures#leadForm
https://www.cardekho.com/Rolls-Royce/Rolls-Royce_Ghost/pictures#leadForm
https://www.rolls-roycemotorcars.com/en_US/showroom/ghost-digital-brochure.html
https://www.rolls-roycemotorcars.com/en_US/showroom/ghost-digital-brochure.html
https://www.rolls-roycemotorcars.com/en_US/showroom/ghost-digital-brochure.html
https://huggingface.co/brand
http://m.gettywallpapers.com/nami-pfps-2/
http://m.gettywallpapers.com/nami-pfps-2/
https://tensor.art/models/616615209278282245
https://tensor.art/models/616615209278282245
https://www.facebook.com/NamiHotandCute/?locale=bs_BA
https://www.facebook.com/NamiHotandCute/?locale=bs_BA
https://k.sina.cn/article_1655152542_p62a79f9e02700nhhe.html
https://k.sina.cn/article_1655152542_p62a79f9e02700nhhe.html
https://in.pinterest.com/pin/306948530865002366/
https://in.pinterest.com/pin/306948530865002366/
https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcSDSk98Uw3O2XW_RFC1jD_Kmw70JWU459euVYtU9nn1CpzPDcwS
https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcSDSk98Uw3O2XW_RFC1jD_Kmw70JWU459euVYtU9nn1CpzPDcwS
https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcSDSk98Uw3O2XW_RFC1jD_Kmw70JWU459euVYtU9nn1CpzPDcwS
https://comisc.theothertentacle.com/overwatch+kiriko+fanart
https://comisc.theothertentacle.com/overwatch+kiriko+fanart
https://www.1999.co.jp/eng/11030018
https://wallpaperforu.com/tag/komi-shouko-wallpaper/page/2/
https://wallpaperforu.com/tag/komi-shouko-wallpaper/page/2/
https://www.tiktok.com/@anime_geek00/video/7304798157894995243
https://www.tiktok.com/@anime_geek00/video/7304798157894995243
https://wall.alphacoders.com/big.php?i=1305702
https://wall.alphacoders.com/big.php?i=1305702
http://m.gettywallpapers.com/komi-can-t-communicate-wallpapers/
http://m.gettywallpapers.com/komi-can-t-communicate-wallpapers/
https://www.ranker.com/list/best-kakashi-hatake-quotes/ranker-anime?page=2
https://www.ranker.com/list/best-kakashi-hatake-quotes/ranker-anime?page=2
https://www.ranker.com/list/best-kakashi-hatake-quotes/ranker-anime?page=2
https://www.wallpaperflare.com/search?wallpaper=Hatake+Kakashi
https://www.wallpaperflare.com/search?wallpaper=Hatake+Kakashi
https://www.peakpx.com/en/hd-wallpaper-desktop-kiptm
https://www.peakpx.com/en/hd-wallpaper-desktop-kiptm
https://in.pinterest.com/pin/584060645404620659/
https://in.pinterest.com/pin/584060645404620659/

Table 1. Average metrics (CLIP-I, CLIP-T, and DINO scores) from various prompt runs for each subject using our proposed method.

Subject Cat Cat2 Dog2 Dog Dog3 Dog6

CLIP-I 0.858 ± 0.017 0.826 ± 0.030 0.833 ± 0.023 0.854 ± 0.015 0.789 ± 0.027 0.845 ± 0.031
CLIP-T 0.348 ± 0.033 0.343 ± 0.030 0.331 ± 0.028 0.349 ± 0.029 0.338 ± 0.025 0.323 ± 0.032
DINO 0.814 ± 0.025 0.752 ± 0.021 0.750 ± 0.049 0.856 ± 0.008 0.549 ± 0.060 0.788 ± 0.017

Subject Dog5 Dog7 Dog8 Doggy Cat3 Cat4

CLIP-I 0.824 ± 0.024 0.853 ± 0.015 0.829 ± 0.021 0.734 ± 0.031 0.834 ± 0.034 0.861 ± 0.016
CLIP-T 0.337 ± 0.026 0.334 ± 0.025 0.343 ± 0.026 0.329 ± 0.030 0.348 ± 0.029 0.349 ± 0.032
DINO 0.761 ± 0.001 0.730 ± 0.049 0.717 ± 0.050 0.686 ± 0.039 0.744 ± 0.031 0.863 ± 0.030

Subject Nami (Anime) Kiriko (Anime) Kakshi (Anime) Shoko Komi (Anime) Harshit (Human) Nityanand (Human)

CLIP-I 0.781 ± 0.035 0.738 ± 0.039 0.834 ± 0.028 0.761 ± 0.029 0.724 ± 0.018 0.665 ± 0.031
CLIP-T 0.337 ± 0.029 0.320 ± 0.032 0.318 ± 0.031 0.356 ± 0.028 0.297 ± 0.036 0.307 ± 0.030
DINO 0.655 ± 0.023 0.483 ± 0.041 0.617 ± 0.061 0.596 ± 0.024 0.555 ± 0.025 0.447 ± 0.068

Subject Shyam (Human) Teapot Robot Toy Backpack Dog Backpack Rc Car

CLIP-I 0.731 ± 0.015 0.836 ± 0.051 0.828 ± 0.026 0.907 ± 0.026 0.774 ± 0.037 0.797 ± 0.020
CLIP-T 0.297 ± 0.026 0.347 ± 0.025 0.285 ± 0.032 0.347 ± 0.021 0.333 ± 0.027 0.321 ± 0.027
DINO 0.531 ± 0.030 0.528 ± 0.132 0.642 ± 0.023 0.660 ± 0.088 0.649 ± 0.037 0.651 ± 0.065

Subject Shiny Shoes Duck Clock Vase Plushie1 Monster Toy

CLIP-I 0.806 ± 0.025 0.845 ± 0.023 0.825 ± 0.062 0.827 ± 0.013 0.897 ± 0.014 0.782 ± 0.041
CLIP-T 0.308 ± 0.023 0.303 ± 0.016 0.308 ± 0.035 0.332 ± 0.026 0.308 ± 0.030 0.308 ± 0.029
DINO 0.735 ± 0.090 0.682 ± 0.049 0.590 ± 0.158 0.705 ± 0.025 0.813 ± 0.027 0.573 ± 0.060

Subject Plushie2 Plushie3 Building Book Car HuggingFace

CLIP-I 0.803 ± 0.022 0.792 ± 0.015 0.852 ± 0.013 0.695 ± 0.023 0.830 ± 0.024 0.810 ± 0.002
CLIP-T 0.324 ± 0.024 0.337 ± 0.031 0.268 ± 0.023 0.301 ± 0.022 0.299 ± 0.032 0.288 ± 0.042
DINO 0.728 ± 0.020 0.766 ± 0.033 0.742 ± 0.019 0.579 ± 0.040 0.684 ± 0.036 0.692 ± 0.001

similarity scores would be computed as SI
CLIP and ST

CLIP ,
respectively.

SI
CLIP =

1

mn

n∑
i=1

m∑
j=1

sim(I (Ri) , I (Gj)) (1)

ST
CLIP =

1

m

m∑
i=1

sim(I (Gi) , T (Pi)) (2)

Similarly, the DINO image-to-image similarity score would
be computed as

SDINO =
1

mn

n∑
i=1

m∑
j=1

sim(V (Ri) , V (Gj)). (3)

Notably, the DINO score is preferred to assess subject
fidelity owing to its sensitivity to differentiate between sub-
jects within a given class. In personalized T2I generations,
all three metrics should be considered jointly for evalua-
tion to avoid a biased conclusion. For instance, models that
copy training set images will have high DINO and CLIP-I
scores but low CLIP-T scores, while a vanilla T2I genera-
tive model like SD and SDXL without subject knowledge
will produce high CLIP-T scores with poor subject align-
ment. As a result, neither model is considered desirable for

the subject-driven T2I generation. In Table-5, we showcase
mean subject-specific CLIP-I, CLIP-T, and DINO scores
along with standard deviations computed across 36 datasets,
with a total of around 1600 generated images and prompts.

4. DiffuseKronA Ablations Study
As outlined in Sec. 4.2. of the main paper, we explore

various trends and observations derived from extensive ex-
perimentation on the datasets specified in Fig. 4.

4.1. Choice of modules to fine-tune the model

Within the UNet network’s transformer block, the linear
layers consist of two components: a) attention matrices and
b) a feed-forward network (FFN). Our investigation focuses
on discerning the weight matrices with the highest impor-
tance for fine-tuning, aiming for efficiency in parameter
utilization.

Our findings reveal that fine-tuning only the attention
weight matrices, namely (WK ,WQ,WV ,WO), proves to be
the most impactful and parameter-efficient strategy. Con-
versely, fine-tuning the FFN layers does not significantly
enhance image synthesis quality but substantially increases
the parameter count, approximately doubling the compu-
tational load. Refer to Fig. 5 for a visual representation

Input Images

“on purple rug”

a) “A [V] teapot”

 w
it
h

 M
L

P
w

it
h

o
u

t
M

L
P

“on top of dirt road ”“in front of Eiffel Tower” “of red colour”

Input Images

“on top of water ”

b) “A [V] backpack”

 w
it
h

 M
L

P

“on a cobblestone“in sunflower field” “in front of Eiffel
street”Tower”

w
it
h

o
u

t
M

L
P

Figure 5. Qualitative and Quantitative comparison between fine-tuning with MLP and w/o MLP. Fine-tuning MLP layers introduces more
parameters and doesn’t enhance image generation compared with fine-tuning solely attention-weight matrices. So, the best outcomes and
efficient use of parameters occur when only attention weight (without MLP) matrices are fine-tuned.

comparing synthesis image quality with and without fine-
tuning FFN layers on top of attention matrices. This graph
unequivocally demonstrates that incorporating MLP layers
does not enhance fidelity in the results. On the contrary,
it diminishes the quality of generated images in certain in-
stances, such as “A [V] backpack in sunflower field”, while
concurrently escalating the number of trainable parameters
substantially, approximately 2x times.

This approach of exclusively fine-tuning attention lay-
ers not only maximizes efficiency but also helps maintain a
lower overall parameter count. This is particularly advanta-

geous when computational resources are limited, ensuring
computational efficiency in the fine-tuning process.

4.2. Effect of Kronecker Factors

How to initialize the Kronecker factors? Initialization
plays a crucial role in the fine-tuning process. Networks that
are poorly initialized can prove challenging to train. There-
fore, having a well-crafted initialization strategy is crucial
for achieving effective fine-tuning. In our experiments, we
explored three initialization methods: Normal initialization,
Kaiming Uniform initialization [10], and Xavier initializa-

Input Images

Ak ~ Normal1

Bk=0
Ak=0

Bk ~ Normal1
Ak ~ Normal1

Bk ~ Normal1
Ak ~ Normal2

Bk=0
Ak=0

Bk ~ Normal2

Ak ~ Normal2

Bk ~ Normal2

Ak=0

Bk=0

Ak ~ XU

Bk=0

Ak=0
Bk ~ XU

Ak ~ XU
Bk=XU

AK ~ KU
Bk=0

Ak=0
Bk ~ KU

AK ~ KU
Bk ~ KU

Ak=0

Bk=0

Ak ~ XU

Bk=0

Ak=0
Bk ~ XU

Ak ~ XU
Bk=XU

AK ~ KU
Bk=0

Ak=0
Bk ~ KU

AK ~ KU
Bk ~ KU

“with a blue house in the background”

“on top of mirror”

Ak ~ Normal1

Bk=0
Ak=0

Bk ~ Normal1
Ak ~ Normal1

Bk ~ Normal1
Ak ~ Normal2

Bk=0
Ak=0

Bk ~ Normal2

Ak ~ Normal2

Bk ~ Normal2

5
0

0
1

0
0

0

5
0

0
1

0
0

0

5
0

0
1

0
0

0

5
0

0
1

0
0

0

“A [V] boot"

Figure 6. Impact of different initialization strategies: optimal outcomes are achieved when initializing Bk to zero while initializing Ak with
either a Normal or Kaiming uniform distribution.

tion. These methods were applied to initialize the Kronecker
factors Ak and Bk. We observed that initializing both fac-
tors with the same type of initialization failed to preserve
fidelity. Surprisingly, initializing Bk with zero yielded the
best results in the fine-tuning process.

As illustrated in Fig. 6, images initialized with (Ak =
Normals, Bk = 0) and (Ak = KU, Bk = 0) produce the
most favorable results, while images initialized with (Ak =
Normals, Bk = Normals) and (Ak = XU, Bk = XU)
result in the least satisfactory generations. Here, s ∈ 1, 2

denotes two different normal distributions - N (0, 1/a2) and
N

(
0,
√
min(d, h)

)
respectively, where d and h represents

in features and out features dimension.
Effect of size of Kronecker Factors. The size of the Kro-
necker factors significantly influences the images generated
by DiffuseKronA. Larger Kronecker factors tend to produce
images with higher resolution and more detailing, while
smaller Kronecker factors result in lower-resolution images
with less detailing. Images generated with larger Kronecker
factors tend to look more realistic, while those generated

Input Images

“A [V] dog”

a1=2

a1=4

a1=8

a1=16

a1=32

a1=64

a1=128

a2=2 a2=4 a2=8 a2=16 a2=32 a2=64 a2=128

“A [V] dog with city in background”

Input Images

“A [V] dog”

a1=2

a1=4

a1=8

a1=16

a1=32

a1=64

a1=128

a2=2 a2=4 a2=8 a2=16 a2=32 a2=64 a2=128

“A [V] dog with blue house in the background”

Input Images

“A [V] teapot”

a1=2

a1=4

a1=8

a1=16

a1=32

a1=64

a1=128

a2=2 a2=4 a2=8 a2=16 a2=32 a2=64 a2=128

“A [V] toy on top of a mirror”

Input Images

“A [V] teapot”

a1=2

a1=4

a1=8

a1=16

a1=32

a1=64

a1=128

a2=2 a2=4 a2=8 a2=16 a2=32 a2=64 a2=128

“A [V] teapot in a beach”

Figure 7. Effect of Kronecker factors i.e., a1 and a2 in image generations. Optimal selection of a1 and a2 considers image fidelity and
parameter count. Following this, we choose a1 and a2 as 4 and 64, respectively, interpreting that the lower Kronecker factor (A) should
have a lower dimension compared to the upper Kronecker factor (B).

Table 2. Effect of the size of Kronecker factors (i.e. a1 & a2) in terms of trainable parameter count.

a1 a2 # Parameters

1

2 119399520
4 59701440
8 29854080

16 14933760
32 7480320
64 3767040
128 1937280

a1 a2 # Parameters

2

2 238799040
4 119402880
8 59708160

16 29867520
32 14960640
64 7534080
128 3874560

a1 a2 # Parameters

4

2 119402880
4 59708160
8 29867520

16 14960640
32 7534080
64 3874560

128 2152320

a1 a2 # Parameters

8

2 59708160
4 29867520
8 14960640

16 7534080
32 3874560
64 2152320

128 1506240
a1 a2 # Parameters

16

2 29867520
4 14960640
8 7534080
16 3874560
32 2152320
64 1506240

128 1613280

a1 a2 # Parameters

32

2 14960640
4 7534080
8 3874560

16 2152320
32 1506240
64 1613280
128 2526960

a1 a2 # Parameters

64

2 7534080
4 3874560
8 2152320

16 1506240
32 1613280
64 2526960
128 4704120

a1 a2 # Parameters

128

2 3874560
4 2152320
8 1506240

16 1613280
32 2526960
64 4704120

128 9233340

Input Images

“A [V] dog”

“A [V] dog image in the form of Vincent Van Gogh painting”

“A [V] dog lying on top of wooden floor”

“A [V] teddy on sand with stones nearby”

“A [V] teddy on top of the sidewalk of the road”

1e-4 2e-4 3e-4 4e-4 5e-4 6e-4 7e-4 8e-4 9e-4 1e-3 2e-3 3e-3 4e-3 5e-3

“A [V] pl�shie”

Figure 8. Effect of learning rate on subject fidelity and text adherence. The most favorable results are obtained using learning rate 5× 10−4.

with smaller Kronecker factors appear more abstract. Vary-
ing the Kronecker factors can result in a wide range of im-
ages, from highly detailed and realistic to more abstract and
lower resolution.

In Fig. 7 when both a1 and a2 are set to relatively high
values (8 and 64 respectively), the generated images are of
very high fidelity and detail. The features of the dog and
the house in the background are more defined and realistic
with the house having a blue colour as mentioned in the
prompt. When a1 is halved (4) while maintaining the same
(64), it results in images where the dog and the house are
still quite detailed due to the high value of a2, but perhaps
less so than in the previous case due to the smaller value
of a1. However, when the factors are small ≤ 8, not only
the generated images do not adhere to the prompt, but the
number of trainable parameters increases drastically.

In Tab. 2, we present the count of trainable parameters
corresponding to different Kronecker factors.

4.3. Effect of learning rate

The learning rate factor influences the alignment of gen-
erated images towards both text prompts and input images.
Our approach yields better results when using learning rates
near 5× 10−4. Higher learning rates, typically around 10−3,
compel the model to overfit, resulting in images closely
mirroring the input images and largely ignoring the input
text prompts. Conversely, lower learning rates, below 10−4,
cause the model to overlook the input images, concentrating
solely on the provided input text.

In Fig. 8, for “A [V] teddy on sand with stones nearby”
when the learning rate is ≥ 1 × 10−3, the generated teddy
bears closely resemble the input images. Additionally, the
sand dunes in the images vanish, along with the removal
of stones. Conversely, for learning rates in the intermedi-
ate ranges, the sand dunes and pebbles remain distinctly
visible. In the context of “A [V] dog image in the form of
a Vincent Van Gogh painting” in Fig. 8, images close to the

“A [V] backpack on top of a white rug”

“A [V] backpack with a city in the background”

“A [V] cat in a doctor outfit”

“A [V] cat floating on water in a swimming pool”

“A [V] dog on a cobblestone street”

“A [V] dog wearing a black top hat and a monocle”
“A [V] dog”

“A [V] sunglasses”

“A [V] sunglasses worn by a bear”

“A [V] sunglasses with the Eiffel Tower in the background”

“A [V] cat”

“A [V] cat wearing a pink sunglasses”

“A [V] cat in a police outfit”

Figure 9. Effect of training steps in image generation on SDXL. In the case of simple prompts (row 1), DiffuseKronA consistently delivers
favorable results between steps 500 and 1000. Conversely, for more complex prompts (row 2), reaching the desired outcome might necessitate
waiting until after step 1000.

rightmost edge lack a discernible painting style, appearing
too similar to the input images. Conversely, images near the
leftmost side exhibit a complete sense of Van Gogh’s style
but lack the features present in the input images. Notably,
in the images positioned in the middle, there is an excellent
fusion of the painting style and the features of the input
images.

4.4. Effect of training steps

In T2I personalization, the timely attainment of satisfac-
tory results within a specific number of iterations is crucial.
This not only reduces the overall training time but also helps
prevent overfitting to the training images, ensuring efficiency
and higher fidelity in image generation. With SDXL, we
successfully generate desired-fidelity images within 500 it-
erations, if the input images and prompt complexity are not

CLIP-I CLIP-T DINO

Figure 10. Plots depicting image alignment, text alignment, and DINO scores against training iterations. The scores are computed from the
same set of images and prompts as depicted in Fig. 9.

very high. However, in cases where the input image complex-
ity or the prompt complexity requires additional refinement,
it is better to extend the training up to 1000 iterations as
depicted in Fig. 9 and Fig. 10.
The images generated by DiffuseKronA show a clear progres-
sion in quality with respect to different steps. As the steps
increase, the model seems to refine the details and improve
the quality of the images. This iterative process allows the
model to gradually improve the image, adding more details
and making it more accurate to the prompt.

In Fig. 9 for instance, “A cat floating on water in a
swimming pool”, in the initial iterations, the model gener-
ates a basic image of a cat floating on water. As the iterations
progress and reach 500, the model refines the image, adding
more details such as the color and texture of the cat, the rip-
ples in the water, and the details of the swimming pool. At

1000 steps the image is a detailed and realistic representation
of the prompt.

In Fig. 9, “A backpack on top of a white rug”, the early
iterations produce a simple image of a backpack on a white
surface. However, as the iterations increase, the model adds
more details to the backpack, such as the zippers, pockets,
and straps. It also starts to add texture to the white rug,
making it look more realistic. By the final iteration, the
white rug gets smoother in texture producing a fine image.

4.5. Effect of the number of training images

4.5.1 One shot image generation

The images are high-quality and accurately represent the
text prompts. They are clear and well-drawn, and the content
of each image matches the corresponding text prompt

Input Images

1 Image

2 Images

3 Images

4 Images

“A [V] toy”
“on top of mirror” “in beach”“on pink cloth” “in front of Eiffel Tower”“floating in milk”

Input Images

1 Image

2 Images

3 Images

4 Images
“on a cobblestone “from side view”“Wearing sunglasses” “in snow”

street” Wooden floor”
“on top of“A [V] dog”

Figure 11. The influence of training images on fine-tuning. Even though DiffuseKronA produces impressive results with a single image, the
generation of images with a broader range of perspectives is enhanced when more training images are provided with variations.

perfectly. For instance, in Fig. 4 (of main paper), the image
of the “A [V] logo” is a yellow smiley face with hands.
The “made as a coin” prompt resulted in a grey ghost
with a white border, demonstrating the model’s ability to
incorporate abstract concepts. The “futuristic neon glow”
and “made with water colours” prompts resulted in a pink
and a yellow octopus respectively, showcasing the model’s
versatility in applying different artistic styles. The model’s
ability to generate an image of a guitar-playing octopus on a
grey notebook from the prompt “sticker on a notebook” is
a testament to its advanced capabilities.

The images are diverse in terms of style and content which
is impressive, especially considering that these images were

generated in a one-shot setting which makes it suitable for
image editing tasks. While our model demonstrates remark-
able proficiency in generating compelling results with a sin-
gle input image, it encounters challenges when attempting to
generate diverse poses or angles. However, when supplied
with multiple images (2, 3, or 4), our model adeptly captures
additional spatial features from the input images, facilitating
the generation of images with a broader range of poses and
angles. Our model can effectively use the information from
multiple input images to generate more accurate and detailed
output images as depicted in Fig. 11.

Training Images

“A [V] Dog”

1 3 5 7 9 10 15 25 50

“wearing sunglasses”

“wearing headphones”

“in Times Square”

“A [V] toy”

“on the street in a city ”

“floating on water”

“made of purple colour”

1 3 5 7 9 10 15 25 50

Figure 12. Images produced by adjusting the guidance score (α) reveal that a score of 7 produces the most realistic results. Increasing the
score beyond 7 significantly amplifies the contrast of the images.

Input Images

“A [V] Dog”

10 20 30 40 50 75 100 150 200

“wearing sunglasses”

“wearing headphones”

“in Times Square”

“A [V] toy”

10 20 30 40 50 75 100 150 200

“on the street in a city”

“floating on water”

“made of purple colour”

Figure 13. The influence of inference steps on image generation. Optimal results are achieved in the range of 50-70 steps, striking a balance
between textual input and subject fidelity. Here, we opted for 50 inference steps to minimize inference time.

4.6. Effect of Inference Hyperparameters

Guidance Score (α). The guidance score, denoted as α,
regulates the variation and distribution of colors in the gen-
erated images. A lower guidance score produces a more
subdued version of colors in the images, aligning with the
description provided in the input text prompt. In contrast, a
higher guidance score results in images with more vibrant
and pronounced colors. Guidance scores ranging from 7
to 10 generally yield images with an appropriate and well-
distributed color palette.

In the example of “A [V] toy” in Fig. 12, when
the prompt is “made of purple color”, it is evident that
a reddish lavender hue is generated for a guidance
score of 1 or 3. Conversely, with a guidance score
exceeding 15, a mulberry shade is produced. For guidance
scores close to 8, images with a pure purple color are formed.

Number of inference Steps. The number of steps plays
a crucial role in defining the granularity of the generated
images. As illustrated in Fig. 13, during the initial steps, the
model creates a subject that aligns with the text prompt and
begins incorporating features from the input image. With
the progression of generation, finer details emerge in the
images. Optimal results, depending on the complexity of
prompts, are observed within the range of 30 to 70 steps,
with an average of 50 steps proving to be the most effective.
However, exceeding 100 steps results in the introduction of
noise and a decline in the quality of the generated images.

The quality of the generated images appears to im-
prove with an increase in the number of inference steps.
For instance, the images for the prompt “a toy” and
“wearing sunglasses” appear to be of higher quality at 50
and 75 inference steps respectively, compared to at 10 infer-
ence steps.

5. Detailed study on LoRA-DreamBooth vs Dif-
fuseKronA

In this section, we expand our analysis of model perfor-
mance by comparing LoRA-DreamBooth and DiffuseKronA
across various aspects, including fidelity, color distribution,
text alignment, stability, and complexity.

5.1. Fidelity & Color Distribution

DiffuseKronA generates images of superior fidelity as
compared to LoRA-DreamBooth in lieu of the higher rep-
resentational power of Kronecker Products along with its
ability to capture spatial features.

In the example of “A [V] backpack” in Fig. 14, the fol-
lowing observations can be made:

(1) “with the Eiffel Tower in the background”: The
backpack generated by DiffuseKronA is pictured with the
Eiffel Tower in the background, creating a striking contrast

between the red of the backpack and the muted colors of the
cityscape, which LoRA-DreamBooth fails to do.

(2) “city in background”: The backpack generated by
DiffuseKronA is set against a city backdrop, where the red
color stands out against the neutral tones of the buildings,
whereas, LoRA-DreamBooth does not generate high contrast
between images.

(3) “on the beach”: The image generated by Dif-
fuseKronA shows the backpack on a beach, where the red
contrasts with the blue of the water and the beige of the sand.

5.2. Text Alignment

DiffuseKronA is more accurate in aligning text with im-
ages compared to the Lora-DreamBooth. For instance, in
the first row, DiffuseKronA correctly aligns the text with
“sunflowers inside” with the image of a vase with sunflow-
ers, whereas LoRA-DreamBooth fails to align the sunflower
in the vase of the same color as of input images.

In more complex input examples like in Fig. 15, such as
the one involving anime in “A [V] character”, the generated
images by LoRA-DreamBooth lack the sense of cooking a
meal and a karaoke bar, whereas DiffuseKronA consistently
produces images that closely align with the provided text
prompts.

5.3. Complex Input images and Prompts

DiffuseKronA demonstrates a notable emphasis on cap-
turing nuances within text prompts and excels in preserving
intricate details from input images to the highest degree. In
contrast, LoRA-DreamBooth lacks these properties. This
distinction is evident in Fig. 16, where, for the prompt
“A [V] face”, DiffuseKronA successfully generates an ivory-
white blazer and a smiling face, while LoRA-DreamBooth
struggles to maintain both the color and the smile on the
face.

Similarly, for the prompt “A [V] clock” in Fig. 16, Dif-
fuseKronA accurately reproduces detailed numbers, particu-
larly 3, from the input images. Although it encounters chal-
lenges in preserving the structure of numbers while creating
a clock of cubical shape, it still maintains a strong focus on
text details— a characteristic lacking in LoRA-DreamBooth.

5.4. Qualitative and Quantitative comparison

We have assessed the image generation capabilities of
DiffuseKronA and LoRA-DreamBooth on SDXL [19]. Our
findings reveal that DiffuseKronA excels in generating im-
ages with high fidelity, more accurate color distribution, and
greater stability compared to LoRA-DreamBooth.

6. Comparison with other Low-Rank Decompo-
sition methods

In this section, we compare our DiffuseKronA with low-
rank methods other than LoRA, specifically with LoKr [27]

Input Images

“A [V] toy”

Input Images

“A [V] teapot”

“which is transparent with milk inside”

“floating on top of water”

“in front of mirror”

“made of purple colour”

DiffuseKrona LoRA-DreamBooth

“in front of wheat field”

“in front of Eiffel Tower”

“floating on water”

DiffuseKrona LoRA-DreamBooth

“in sunflower field”

Input Images

“A [V] backpack”

“on beach”

“with a city in the background”

“floating on top of water”

DiffuseKrona LoRA-DreamBooth

“with Eiffel Tower in the background”

“in sunflower field”

“floating on top of water”

“of purple colour, in the jungle ”

DiffuseKrona LoRA-DreamBooth

“with Eiffel Tower in the background”

Input Images

“A [V] plushie”

Figure 14. Comparison of fidelity and color preservation in DiffuseKronA and LoRA-DreamBooth.

“attempting to cook a meal,
 with his culinary skills”

DiffuseKrona LoRA-DreamBooth

“which is transparent with milk inside”

Input Images

“with sunflowers inside”

a)

“sipping a cup of tea and writing
notes with the other hand”

DiffuseKrona LoRA-DreamBooth

“at a karaoke bar, holding a microphone,

Input Images

with her friends cheering”

DiffuseKrona LoRA-DreamBooth

Input Images

“on top of mirror”

DiffuseKrona LoRA-DreamBooth

“in a beach”

Input Images

“A [V] shoes”d)

“standing under a full moon with
his red eyes activated and bleeding”

“A [V] vase” b) “A [V] anime”

c) “A [V] anime”

Figure 15. Comparison of text alignment in generated images by our proposed DiffuseKronA and LoRA-DreamBooth.

and LoHA [27]. We also note that our implementation is
independent of the LyCORIS project [27], and we did not
use LoKr nor LoHA in DiffuseKronA1. We summarize the
key differences between DiffuseKronA and these methods as
follows:

❶ DiffuseKronA has 2 controllable parameters (a1 and
a2), which are chosen manually through extensive experi-
ments (refer to Fig. 7 and Tab. 2), whereas LoKr [27] follows
the procedure mentioned in the FACTORIZATION function
(see right) which depends on input dimension and another
hyper-parameter called factor. Following the descriptions
on the implementation of Figure 2 in [27], and we quote
“we set the factor to 8 and do not perform further decom-
position of the second block”, the default implementation
makes A a square matrix of dimension (factor × factor).
Notably, for any factor, f > 0, A would always be a square
matrix of shape (f × f) which is a special case (a subset) of
DiffusKronA (diagonal entry in Fig. 7) but for f = −1, A
matrix size would be completely dependent upon dimension,
and it would not be a square matrix always.

1To ensure a fair comparison, we have incorporated LoKr and LoHA
into the SDXL backbone.

1 def factorization(dim: int, factor: int=-1):
2 if factor > 0 and (dim % factor) == 0:
3 m = factor
4 n = dim // factor
5 if m > n:
6 n, m = m, n
7 return m, n
8 if factor < 0:
9 factor = dim

10 m, n = 1, dim
11 length = m + n
12 while m < n:
13 new_m = m + 1
14 while dim % new_m != 0:
15 new_m += 1
16 new_n = dim // new_m
17 if new_m + new_n > length or new_m >

factor:
18 break
19 else:
20 m, n = new_m, new_n
21 if m > n:
22 n, m = m, n
23 return m, n

Listing 1. This code snippet is extracted from the official LyCORIS
codebase (Link).

https://github.com/KohakuBlueleaf/LyCORIS/blob/main/lycoris/modules/lokr.py#L10

Input Images

a) “A [V] face”

DiffuseKrona LoRA-DreamBooth

“wearing a White Dinner Jacket by Giorgio Armani

“wearing a classic suit from Ralph Lauren of a navy blue

“dressed in a Banarasi Silk Sherwani, adorned

suit with peak lapels and a subtle pinstripe pattern”

with intricate zari work”

 Input Images

DiffuseKrona LoRA-DreamBooth

“made of blue colour ”

“on top of white rug”

“of cube shape”

b) “A [V] clock”

of ivory-white colour with a smile on face”

Figure 16. Comparison of image generation on complex prompts and input images by DiffuseKronA and LoRA-DreamBooth.

These attributes make our way of performing Kronecker
decomposition a superset of LoKr, offering greater control
and flexibility compared to LoKr. On the other hand, LoHA
has only one controllable parameter, i.e., rank, similar to
LoRA.

❷ LoKr takes the generic form of ∆W = A⊗ (B · C),
and LoHA adopts ∆W = (A·B)⊙(C ·D), where ⊙ denotes
the Hadamard product. For more details, we refer the readers
to Figure 1 in [27]. Based on the definition, LoHA does not
explore the benefits of using Kronecker decomposition.

❸ [27] provided the first use of Kronecker decomposi-
tion in Diffusion model fine-tuning but limited analysis in
the few-shot T2I personalization setting. In our study, we
conducted detailed analysis and exploration to demonstrate
the benefits of using Kronecker decomposition. Our new
insights include large-scale analysis of parameter efficiency,
enhanced stability to hyperparameters, and improved text
alignment and fidelity, among others.

❹ We further compare our DiffuseKronA with LoKr and
LoHA using the default implementations from [27] in Fig. 17
and Fig. 18, respectively. However, the default settings were
used in the SD variant, and it is also evident that person-
alized T2I generations are very sensitive to model settings
and hyper-parameter choices. Bearing these facts, we also
explored the hyperparameters in both adapters. In Fig. 19,
we have presented the ablation study examining the factors

and ranks for LoKr utilizing SDXL, while in Fig. 20, we
showcase an ablation study on the learning rate. Moreover,
Fig. 21 features an ablation study on the learning rate and
rank for LoHA using SDXL. These analyses reveal that for
LoKr, the optimal factor is -1 and the optimal rank is 8, with
a learning rate of 1 × 10−3; while for LoHA, the optimal
rank is 4, with a learning rate of 1× 10−4.

Additionally, quantitative comparisons are conducted, en-
compassing parameter count alongside image-to-image and
image-to-text alignment scores, as detailed in Tab. 3 and
Tab. 4. The results in Tab. 3 indicate that although LoKr
marginally possesses fewer parameters still DiffuseKronA
with a1 = 16 achieves superior CLIP-I, CLIP-T, and
DINO scores. This contrast is readily noticeable in the
visual examples depicted in Fig. 17. For the prompt
“A [V] toy with the Eiffel Tower in the background”, LoKr
fails to construct the Eiffel Tower in the background, un-
like DiffuseKronA (a1 = 16). Similarly, in the case of
“A [V] teapot floating on top of water” LoKr distorts the
teapot’s spout, whereas DiffuseKronA maintains fidelity.
In the case of “A [V] toy” (last row), the results of Dif-
fuseKronA are much more aligned as compared to LoKr for
both prompts. Conversely, for dog and cat examples, all the
methods demonstrate similar visual appearance in terms of
fidelity as well as textual alignment. Consequently, it’s evi-
dent that while LoKr reduces parameter count, it struggles

with complex input images or text prompts with multiple con-
texts. Hence, DiffusekronA achieves efficiency in parameters
while upholding average scores across CLIP-I, CLIP-T, and
DINO metrics. Hence, achieving a better trade-off between
parameter efficiency and personalized image generation.

Table 3. Quantitative comparison of DiffuseKronA with low-rank
decomposition methods namely LoRA, LoKr, and LoHA in terms
of the number of trainable parameters, text-alignment, and image-
alignment scores. The scores are computed from the same set of
images and prompts as depicted in Fig. 17.

MODEL # PARAMETERS (↓) CLIP-I (↑) CLIP-T (↑) DINO (↑)

DiffuseKronA 3.8 M 0.799 0.267 0.648
a1 = 2 ±0.073 ±0.048 ±0.122

DiffuseKronA 7.5 M 0.809 0.268 0.651
a1 = 4 ±0.086 ±0.055 ±0.142

DiffuseKronA 2.1 M 0.815 0.313 0.649
a1 = 8 ±0.074 ±0.024 ±0.139

DiffuseKronA 0.817 0.301 0.654
a1 = 16

1.5 M ±0.078 ±0.038 ±0.127

LoRA-DreamBooth 5.8 M 0.807 0.288 0.635
rank = 4 ±0.077 ±0.033 ±0.136

LoKr 1.36 M 0.801 0.287 0.646
f = −1, rank = 8 ±0.065 ±0.049 ±0.147

LoKr 14.9 M 0.812 0.277 0.639
f = 8 ± 0.069 ±0.042 ±0.111

LoHA 20.9 M 0.818 0.299 0.641
rank = 4 ±0.064 ±0.041 ±0.120

Table 4. Quantitative comparison of DiffuseKronA with varying
factors (i.e. 2, 4, 8, 16) of LoKr in terms of the number of train-
able parameters, text-alignment, and image-alignment scores. The
scores are computed from the same set of images and prompts as
depicted in Fig. 18.

MODEL # PARAMETERS (↓) CLIP-I (↑) CLIP-T (↑) DINO (↑)

LoKr 238.7 M 0.825 0.244 0.727
f = 2 ±0.037 ±0.024 ±0.036

LoKr 59.7 M 0.784 0.246 0.683
f = 4 ± 0.063 ±0.030 ±0.051

LoKr 14.9 M 0.749 0.292 0.568
f = 8 ±0.067 ±0.064 ±0.075

LoKr 3.8 M 0.707 0.231 0.472
f = 16 ± 0.121 ±0.025 ±0.160

DiffuseKronA 0.806 0.281 0.653
a1 = 8

2.1 M ± 0.028 ± 0.070 ± 0.045

DiffuseKronA
(a1=2, a2 =64)

DiffuseKronA
(a1 =4, a2 =64)

DiffuseKronA
(a1 =8, a2 =64)

DiffuseKronA
(a1 =16, a2 =64)

“A [V] cat”

“A [V] dog”

“A [V] toy”

“A [V] toy”

“A [V] teapot”

LoRA

DreamBooth

LoKr
(Factor = -1, r = 8)

LoKr
(Factor = 8)

LoHA
(Rank = 4)

“A [V] dog sleeping”

“A [V] toy in the snow”

“A [V] dog in a dog house”

“A [V] teapot on top of a dirt road”

“A [V] toy floating on top of water”

“A [V] cat on a cobblestone street”

“A [V] toy on top of a wooden floor”

“A [V] teapot floating on top of water”

“A [V] cat on top of a purple rug in a forest”

“A [V] toy with the Eiffel Tower in the background”

Figure 17. Qualitative comparison of four variants of DiffusekronA with other low-rank methods including LoRA, LoKr, and LoHA.
Learning rates: DiffusekronA (5× 10−4), LoRA (1× 10−4), LoKr (1× 10−3) & LoHA (1× 10−4).

factor = 2

Input Images

Input Images

Input Images

“A [V] person”

“A [V] anime”

“A [V] toy”

“A [V] toy in forest”

“A [V] toy in snow”

“A [V] anime reading a book in a library wearing a headphone”

“A [V] anime as a chef, showing her culinary skills”

“A Monet-inspired painting of a [V] face standing near a
blooming lily pond”

“A [V] person with Eiffel Tower in the background”

factor = 4 factor = 8 factor = 16

factor = 2 factor = 4 factor = 8 factor = 16

factor = 2 factor = 4 factor = 8 factor = 16

DiffuseKronA

DiffuseKronA

DiffuseKronA

Figure 18. Qualitative comparison. Results are shown for the default factors given by the LoKr implementation, with the varying factors
being 2, 4, 8, and 16.

f=-1 f=2 f=4 f=8

r=1

r=2

r=4

r=8

f=-1 f=2 f=4 f=8

r=1

r=2

r=4

r=8

f=-1 f=2 f=4 f=8

r=1

r=2

r=4

r=8

f=-1 f=2 f=4 f=8

r=1

r=2

r=4

r=8

Input Images

“A [V] person”

“A [V] person with Eiffel Tower in the background”

“A Monet-inspired painting of a [V] face standing near a blooming lily pond”

db = True

db = True db = False

db = False

Figure 19. Ablation study on factor and rank for LoKr using SDXL, with a learning rate of 1× 10−3. We found that the optimal factor
and rank are -1 and 8, respectively. We also experimented with db=True, which indicates further low-rank decomposition of both matrices A
and B, whereas db=False means only matrix B is decomposed further. (continued..)

lr=1e-4

r=1

r=2

r=4

r=8

r=1

r=2

r=4

r=8

r=1

r=2

r=4

r=8

r=1

r=2

r=4

r=8

lr=5e-4 lr=1e-3 lr=5e-3 lr=1e-4 lr=5e-4 lr=1e-3 lr=5e-3

lr=1e-4 lr=5e-4 lr=1e-3 lr=5e-3 lr=1e-4 lr=5e-4 lr=1e-3 lr=5e-3

Input Images

“A [V] anime”

“A [V] anime as a chef, showing her culinary skills”

“A [V] anime reading a book in a library wearing a headphone”

db = True

db = True db = False

db = False

Figure 19. Ablation study on factor and rank for LoKr using SDXL, with a learning rate of 1× 10−3. We found that the optimal factor
and rank are -1 and 8, respectively. We also experimented with db=True, which indicates further low-rank decomposition of both matrices A
and B, whereas db=False means only matrix B is decomposed further. (continued..)

f=-1 f=2 f=4 f=8

r=1

r=2

r=4

r=8

f=-1 f=2 f=4 f=8

r=1

r=2

r=4

r=8

f=-1 f=2 f=4 f=8

r=1

r=2

r=4

r=8

f=-1 f=2 f=4 f=8

r=1

r=2

r=4

r=8

Input Images

“A [V] toy”

“A [V] toy in forest” “A [V] toy in forest”

“A [V] toy in snow” “A [V] toy in snow”

db = True

db = True db = False

db = False

Figure 19. Ablation study on factor and rank for LoKr using SDXL, with a learning rate of 1× 10−3. We found that the optimal factor
and rank are -1 and 8, respectively. We also experimented with db=True, which indicates further low-rank decomposition of both matrices A
and B, whereas db=False means only matrix B is decomposed further. (end)

lr=1e-4

r=1

r=2

r=4

r=8

r=1

r=2

r=4

r=8

r=1

r=2

r=4

r=8

r=1

r=2

r=4

r=8

lr=5e-4 lr=1e-3 lr=5e-3 lr=1e-4 lr=5e-4 lr=1e-3 lr=5e-3

lr=1e-4 lr=5e-4 lr=1e-3 lr=5e-3 lr=1e-4 lr=5e-4 lr=1e-3 lr=5e-3

Input Images

“A [V] person”

“A [V] person with Eiffel Tower in the background”

“A Monet-inspired painting of a [V] face standing near a blooming lily pond”

db = True

db = True db = False

db = False

Figure 20. Ablation study on factor and learning rate for LoKr using SDXL, with a fixed factor of -1. We found that the optimal learning
rate and rank are 1× 10−3 and 8, respectively. We also experimented with db=True, which indicates further low-rank decomposition of both
matrices A and B, whereas db=False means only matrix B is decomposed further. (continued..)

lr=1e-4

r=1

r=2

r=4

r=8

r=1

r=2

r=4

r=8

r=1

r=2

r=4

r=8

r=1

r=2

r=4

r=8

db = True

lr=5e-4 lr=1e-3 lr=5e-3 lr=1e-4 lr=5e-4 lr=1e-3 lr=5e-3

lr=1e-4 lr=5e-4 lr=1e-3 lr=5e-3 lr=1e-4 lr=5e-4 lr=1e-3 lr=5e-3

Input Images

“A [V] toy”

“A [V] toy in forest” “A [V] toy in forest”

“A [V] toy in snow” “A [V] toy in snow”

db = True db = False

db = False

Figure 20. Ablation study on factor and learning rate for LoKr using SDXL, with a fixed factor of -1. We found that the optimal learning
rate and rank are 1× 10−3 and 8, respectively. We also experimented with db=True, which indicates further low-rank decomposition of both
matrices A and B, whereas db=False means only matrix B is decomposed further. (continued..)

f=-1 f=2 f=4 f=8

r=1

r=2

r=4

r=8

f=-1 f=2 f=4 f=8

r=1

r=2

r=4

r=8

f=-1 f=2 f=4 f=8

r=1

r=2

r=4

r=8

f=-1 f=2 f=4 f=8

r=1

r=2

r=4

r=8

Input Images

“A [V] anime”

“A [V] anime as a chef, showing her culinary skills”

“A [V] anime reading a book in a library wearing a headphone”

db = True

db = True db = False

db = False

Figure 20. Ablation study on factor and learning rate for LoKr using SDXL, with a fixed factor of -1. We found that the optimal learning
rate and rank are 1× 10−3 and 8, respectively. We also experimented with db=True, which indicates further low-rank decomposition of both
matrices A and B, whereas db=False means only matrix B is decomposed further. (end)

lr = 1e-4 lr = 5e-4 lr = 1e-3 lr = 5e-3lr = 5e-5

lr = 1e-4 lr = 5e-4 lr = 1e-3 lr = 5e-3lr = 1e-5 lr = 5e-5

lr = 1e-4 lr = 5e-4 lr = 1e-3 lr = 5e-3lr = 1e-5 lr = 5e-5

R
a
n

k
 =

 4
R

a
n

k
 =

 8

R
a
n

k
 =

 4
R

a
n

k
 =

 8

R
a
n

k
 =

 4
R

a
n

k
 =

 8

R
a
n

k
 =

 4
R

a
n

k
 =

 8

R
a
n

k
 =

 4
R

a
n

k
 =

 8

R
a
n

k
 =

 4
R

a
n

k
 =

 8

lr = 1e-5

“A [V] person with Eiffel Tower in the background”

“A Monet-inspired painting of a [V] face standing near a blooming lily pond”

“A [V] toy in snow”

“A [V] toy in forest”

“A [V] anime reading a book in a library wearing a headphone”

Figure 21. Ablation study on learning rate and rank for LoHA using SDXL. We found the optimal learning rate and rank to be 1× 10−4 and
4, respectively.

7. Comparison with state-of-the-arts
Qualitative Comparison. In this section, we extend upon
Sec. 4.4. of the main paper, comparing DiffuseKronA with
State-of-the-art text-to-image personalization models includ-
ing DreamBooth, LoRA-DreamBooth, SVDiff, Textual In-
vention, and Custom Diffusion.

(1) Textual Inversion [7] is a fine-tuning method that opti-
mizes a placeholder embedding to reconstruct the training
set of subject images. Learning a new concept requires 3,000
steps, which takes around 30 minutes on an A100 GPU [15].

(2) DreamBooth [22] refines the entire network through
additional preservation loss as a form of regularization, lead-
ing to enhancements in visual quality that exhibit promising
results. Updating DreamBooth for a new concept typically
requires about 6 minutes on an A100 GPU [15].

(3) LoRA-DreamBooth [23] explores low-rank adapta-
tion for parameter-efficient fine-tuning attention-weight ma-
trices of the text-to-image diffusion model. Fine-tuning
LoRA-DreamBooth for a new concept typically takes about
5 minutes on a single 24GB NVIDIA RTX-3090 GPU.

(4) SVDiff [9] involves fine-tuning the singular values
of the weight matrices, leading to a compact and efficient
parameter space that reduces the risk of overfitting and lan-
guage drifting. It took around 15 minutes on a single 24GB
NVIDIA RTX-3090 GPU2.

(5) Custom diffusion [13] involves selective fine-tuning of
weight matrices through a conditioning mechanism, enabling
parameter-efficient refinement of diffusion models. This
approach is further extended to encompass multi-concept
fine-tuning. The fine-tuning time of Custom diffusion is
around 6 minutes on 2 A100 GPUs.
Qualitative Comparison. DiffuseKronA consistently pro-
duces images closely aligned with the input images and
consistently integrates features specified in the input text
prompt. The enhanced fidelity and comprehensive compre-
hension of the input text prompts can be attributed to the
structure-preserving capability and improved expressiveness
facilitated by Kronecker product-based adaptation. The im-
ages generated by LoRA-DreamBooth are not of high quality
and demand extensive experimentation for improvement, as
depicted in Fig. 22. As depicted in the figure, DiffuseKronA
not only generates well-defined images but also has a better
color distribution as compared to Custom Diffusion.

8. Comparison with tuning-free methods
Recent advancements within tuning-free methods obtain

reasonable performance, some of them are even comparable
with tuning-based methods in some aspects and are much
more efficient. Here, we have evaluated the proposed method
using all the samples and prompts from [22], so that some

2SVDiff did not release official codebase, we used open-source code for
SVDiff results in Fig. 22.

tuning-free methods [1, 15, 16, 18, 29] can also be compared
under the same setting using results from corresponding
papers, because some of them may not have official imple-
mentations. We have not included this in the main paper
due to having different objectives but added it here to give
more information to readers by providing a fair and compre-
hensive comparison. In Tab. 5, we quantitatively evaluate
our method with recently proposed tuning and tuning-free
methods.

Table 5. Quantitative comparison of subject fidelity (DINO and
CLIP-I), prompt fidelity (CLIP-T) of DiffuseKronA with SOTA.
The evaluation images and prompts are the same taken from
DreamBench [22] (25 subjects with 30 text prompts for each
subject).

Method CLIP-I (↑) CLIP-T (↑) DINO (↑)

Tu
ni

ng
-F

re
e SuTI [1] 0.819 0.304 0.741

BLIP-Diffusion [15] 0.805 0.302 0.670
Kosmos-G [18] 0.847 0.287 0.694

CAFE [29] 0.827 0.294 0.715
Subject-Diffusion [16] 0.787 0.293 0.711

Tu
ni

ng OFT [20] 0.785 0.237 0.632
DreamBooth [22] 0.803 0.305 0.668

DiffuseKronA (Ours) 0.814 0.306 0.712

9. Practical Implications

• Content Creation: It can be used to generate photoreal-
istic content from text prompts.

• Image Editing and In-painting: The model can be used
to edit images or fill in missing parts of an image.

• Super-Resolution: It can be used to enhance the resolu-
tion of images.

• Video Synthesis: The model can be used to generate
videos from text prompts.

• 3D Assets Production: It can be used to create 3D assets
from text prompts.

• Personalized Generation: The model can be used in
personalized generation with DreamBooth fine-tuning.

• Resource Efficiency: The model is resource-efficient
and can be trained with limited resources.

• Model Compression: The model allows for architec-
tural compression, reducing the number of parameters,
MACs per sampling step, and latency.

https://github.com/mkshing/svdiff-pytorch

(a)

Input Images

“A [V] dog”

“A [V] chair”(b)

“A [V] cat”(c)

“A [V] plushie”(d)

Textual InversionDreamBoothLoRA-DreamBoothDiffuseKronA Custom Diffusion SVDiff

“A [V] dog in front of Times Square”

“Painting of [V] dog at a beach by artist Claude Monet”

“A photo of Floor lamp on the side of [V] chair”

“A chair near a pool”[𝑉]

“A [V] dog in construction outfit”

“A photo of cat”[𝑉]

“A [V] cat at a beach with a view of seashore”

“A photo of [V] tortoise plushy swimming in pool”

“A backpack in the style of [V] tortoise plushy”

Figure 22. Qualitative comparison between generated images by DiffuseKronA, LoRA-DreamBooth, Textual Inversion, DreamBooth, and
Custom Diffusion. Notably, our methods’ results are generated considering a2 = 8. We maintained the original settings of all these methods
and used the SD CompVis-1.4 [2] variant to ensure a fair comparison.

(c) “A [V] cat”

“A [V] chair”(b)

(a) “A [V] dog”

“A [V] plushie”(d)

Figure 23. Quantitative comparison of DiffuseKronA with SOTA on Text-Image Alignment. The scores are computed from the same set of
images and prompts as depicted in Fig. 22.

References

[1] Wenhu Chen, Hexiang Hu, Yandong Li, Nataniel Ruiz, Xuhui
Jia, Ming-Wei Chang, and William W Cohen. Subject-driven
text-to-image generation via apprenticeship learning. Ad-
vances in Neural Information Processing Systems, 36, 2024.
29

[2] CompVis. stable-diffusion, 2021. 30

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1

[4] Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia,
James J Clark, and Mehdi Rezagholizadeh. Krona: Param-
eter efficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022. 1

[5] Ali Edalati, Marzieh Tahaei, Ahmad Rashid, Vahid Nia,
James Clark, and Mehdi Rezagholizadeh. Kronecker de-

composition for gpt compression. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguis-
tics (Volume 2: Short Papers), page 219–226. Association for
Computational Linguistics, 2022. 3

[6] Ali Edalati, Marzieh S Tahaei, Ahmad Rashid, Vahid Par-
tovi Nia, James J Clark, and Mehdi Rezagholizadeh. Com-
pacter: Efficient low-rank hypercomplex adapter layers. arXiv
preprint arXiv:2106.04647, 2021. 1

[7] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik,
Amit H. Bermano, Gal Chechik, and Daniel Cohen-Or. An
image is worth one word: Personalizing text-to-image gener-
ation using textual inversion, 2022. 29

[8] Marawan Gamal Abdel Hameed, Marzieh S Tahaei, Ali
Mosleh, Vahid Partovi Nia, Hengnu Chen, Lei Deng, Tianyi
Yan, and Guoqi Li. Convolutional neural network compres-
sion through generalized kronecker product decomposition.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 34(5):2205–2219, 2023. 1

[9] Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar,
Dimitris Metaxas, and Feng Yang. Svdiff: Compact pa-
rameter space for diffusion fine-tuning. arXiv preprint
arXiv:2303.11305, 2023. 29

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification, 2015. 6

[11] Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei Yang,
and Xin Eric Wang. Parameter-efficient model adaptation for
vision transformers. arXiv preprint arXiv:2203.16329, 2022.
1

[12] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In Int. Conf. Mach. Learn., pages 2790–
2799. PMLR, 2019. 1

[13] Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shecht-
man, and Jun-Yan Zhu. Multi-concept customization of text-
to-image diffusion. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1931–1941, 2023. 4, 29

[14] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason
Yosinski. Measuring the intrinsic dimension of objective
landscapes. In International Conference on Learning Repre-
sentations, 2018. 1

[15] Dongxu Li, Junnan Li, and Steven CH Hoi. Blip-
diffusion: Pre-trained subject representation for control-
lable text-to-image generation and editing. arXiv preprint
arXiv:2305.14720, 2023. 29

[16] Jian Ma, Junhao Liang, Chen Chen, and Haonan Lu.
Subject-diffusion: Open domain personalized text-to-image
generation without test-time fine-tuning. arXiv preprint
arXiv:2307.11410, 2023. 29

[17] James G Nagy and Lisa Perrone. Kronecker products in im-
age restoration. In Advanced Signal Processing Algorithms,
Architectures, and Implementations XIII, volume 5205, page
155–163. International Society for Optics and Photonics,
2003. 1

[18] Xichen Pan, Li Dong, Shaohan Huang, Zhiliang Peng, Wenhu
Chen, and Furu Wei. Kosmos-g: Generating images in con-
text with multimodal large language models. arXiv preprint
arXiv:2310.02992, 2023. 29

[19] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann,
Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach.
Sdxl: Improving latent diffusion models for high-resolution
image synthesis, 2023. 15

[20] Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao
Feng, Zhen Liu, Dan Zhang, Adrian Weller, and Bernhard
Schölkopf. Controlling text-to-image diffusion by orthogo-
nal finetuning. Advances in Neural Information Processing
Systems, 36:79320–79362, 2023. 29

[21] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J Liu. Exploring the limits of transfer learning with
a unified text-to-text transformer. The Journal of Machine
Learning Research, 21(1):5485–5551, 2020. 1

[22] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven gen-
eration. In CVPR, pages 22500–22510, June 2023. 4, 29

[23] Simo Ryu. Low-rank adaptation for fast text-to-image diffu-
sion fine-tuning, 2023. 29

[24] Marzieh Tahaei, Ella Charlaix, Vahid Nia, Ali Ghodsi, and
Mehdi Rezagholizadeh. KroneckerBERT: Significant com-
pression of pre-trained language models through kronecker
decomposition and knowledge distillation. In Proceedings of
the 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, page 2116–2127, Seattle, United States, 2022.
Association for Computational Linguistics. 1

[25] Urmish Thakker, Jesse Beu, Dibakar Gope, Chu Zhou, Igor
Fedorov, Ganesh Dasika, and Matthew Mattina. Compressing
rnns for iot devices by 15-38x using kronecker products. arXiv
preprint arXiv:1906.02876, 2019. 1, 3

[26] Dingheng Wang, Bijiao Wu, Guangshe Zhao, Man Yao,
Hengnu Chen, Lei Deng, Tianyi Yan, and Guoqi Li. Kro-
necker cp decomposition with fast multiplication for com-
pressing rnns. IEEE Transactions on Neural Networks and
Learning Systems, 34(5):2205–2219, 2023. 3

[27] Shin-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard BW
Yang, Giyeong Oh, and Yanmin Gong. Navigating text-to-
image customization: From lycoris fine-tuning to model eval-
uation. arXiv preprint arXiv:2309.14859, 2023. 15, 17, 18

[28] Aston Zhang, Yi Tay, SHUAI Zhang, Alvin Chan, Anh Tuan
Luu, Siu Hui, and Jie Fu. Beyond fully-connected layers with
quaternions: Parameterization of hypercomplex multiplica-
tions with 1/n parameters. In International Conference on
Learning Representations, 2020. 1

[29] Yufan Zhou, Ruiyi Zhang, Jiuxiang Gu, and Tong Sun. Cus-
tomization assistant for text-to-image generation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9182–9191, 2024. 29

	. Background
	. Datasets Descriptions
	. Evaluation Metrics
	. DiffuseKronA Ablations Study
	. Choice of modules to fine-tune the model
	. Effect of Kronecker Factors
	. Effect of learning rate
	. Effect of training steps
	. Effect of the number of training images
	One shot image generation

	. Effect of Inference Hyperparameters

	. Detailed study on LoRA-DreamBooth vs DiffuseKronA
	. Fidelity & Color Distribution
	. Text Alignment
	. Complex Input images and Prompts
	. Qualitative and Quantitative comparison

	. Comparison with other Low-Rank Decomposition methods
	. Comparison with state-of-the-arts
	. Comparison with tuning-free methods
	. Practical Implications

