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A. Hyperparameters for Ladon model training
Step 1: Pre-training encoder-decoder

We pre-train the encoder-decoder modules of our Ladon
models with the Adam optimizer [4], minimizing the loss
function defined in Eq. (2) in the main paper. We use
outputs of the first, second, third, and fourth residual /
ResNeSt blocks from the pre-trained ResNet-50 as ht

i(x)
and extract those of the corresponding residual blocks in
our ResNet-50-based Ladon models as hs

i (x). β is a hy-
perparameter to control the rate-distortion tradeoff. Given
a Ladon architecture, we train five individual models with
β = 0.32, 0.64, 1.28, 2.56, and 5.12. The same procedure
is applied when teacher and student models are based on
ResNeSt-269e [10]. We use the trainind set of the ILSVRC
2012 dataset [8] for 10 epochs, and training batch size is 32.
The initial learning rate is 0.001 and exponentially decayed
by a factor of 0.1 after the first 5 and 8 epochs.

Step 2: Fine-tuning decoder and subsequent mod-
ules

Following Step 1, we freeze parameters of the encoder
and entropy bottleneck. We then fine-tune the remaining
modules including a classification head as illustrated in Fig. 1
(bottom). Specifically, we fine-tune the modules for 10
epochs using the pretrained ResNet-50 (ResNeSt-269e) as
a teacher model for a standard knowledge distillation (KD)
loss function [3]

L = α · CE(ŷ,y) + (1− α) · τ2 · KL
(
oS,oT) , (S1)

where CE and KL are cross-entropy and Kullbuck-Leibler
divergence, respectively. ŷ and y are true and predicted
class labels. α ∈ [0, 1] and τ are hyperparameters. We use
α = 0.5 and τ = 1 in this study. oT and oS indicatesoftened
output distributions produced by teacher and student mod-
els, respectively. oT = [oT

1, o
T
2, . . . , o

T
|C|] where C is a set

of object categories in the target task, which is an image
classification for the ILSVRC 2012 dataset [8]. oT

i is the

*This work was done prior to joining Spiffy AI.

teacher model’s softened output value (scalar) for the i-th
object category:

oT
i =

exp
(

vT
i

τ

)
∑

k∈C exp
(

vT
k

τ

) , (S2)

where vT
i is the teacher model’s logit value for the i-th object

category. The same rule is applied to the student model.
Here, we use a stochastic gradient descent (SGD) opti-

mizer with the initial learning rate of 0.001, momentum of
0.9, and weight decay of 0.0005. The learning rate is expo-
nentially decayed by a factor of 0.1 after the first 5 epochs.
At the end of this step, all the modules in our Ladon model
required for the image classification task are ready to serve.

Step 3: Fine-tuning other task-specific modules

Following Step 2, we freeze all the learnt parameters and
then introduce other task-specific modules.

Object Detection We introduce to the fine-tuned Ladon
model, an object detection head that consists of Faster R-
CNN [7] and Feature Pyramid Network (FPN) [5] modules.
We train the object detection head on COCO 2017 [6] for
26 epochs (ResNet-based Ladon) and 28 epochs (ResNeSt-
based Ladon), minimizing a linear combination of bound-
ing box regression, objectness, and object classification
losses [7]. The SGD optimizer uses the initial learning
rate of 0.02, momentum of 0.9, weight decay of 0.0001,
and batch size of 8. Its learning rate is exponentially de-
cayed by a factor of 0.1 after the first 16 and 22 epochs. For
ResNeSt-based Ladon, we use the weight decay of 0.0005
and exponentially decay the learning rate by a factor of 0.1
after the first 10, 18 and 24 epochs.

Semantic Segmentation For a semantic segmentation
head, we employ DeepLabv3 [1]. With the SGD optimizer,
we train the semantic segmentation head by minimizing the
standard cross-entropy for 90 epochs, using momentum of
0.9, weight decay of 0.0001, and batch size of 16. For the
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Jetson Nano w/ CUDA (mobile device) + Laptop w/ CUDA (edge server)
Wireless communication data rate: 37.5 [Kbps]
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OD: Object Detection

SS: Semantic Segmentation
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Figure S1. End-to-end latency for Jetson Nano (mobile device), laptop with CUDA (edge server), and wireless communication data rate of
37.5 Kbps. Top/bottom: local computing without/with CUDA.
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Jetson NX Xavier w/ CUDA (mobile device) + Laptop w/ CUDA (edge server)
Wireless communication data rate: 37.5 [Kbps]
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SS: Semantic Segmentation
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Figure S2. End-to-end latency for Jetson NX Xavier (mobile device), laptop with CUDA (edge server), and wireless communication data
rate of 37.5 Kbps. Top/bottom: local computing without/with CUDA.
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Figure S3. Local Giga Multiply-Accumulate Operation (GMAC).

first 30 epochs, we use COCO 2017 training dataset [6] with
the initial learning rates are 0.02 and 0.01 for the semantic
segmentation head and its auxiliary classifier, respectively.
We follow [1] and reduce the learning rates at every iteration

η = η0 ×
(
1− t

Niter

)0.9

, (S3)

where η0 is the initial learning rate. t and Niter are the
current iteration count and the total number of iterations,
respectively.

For the last 60 epochs, we use the PASCAL VOC 2012
training dataset [2] and fine-tune the semantic segmentation
head. Other hyperparameters are the same as those for the
first 30 epochs.

B. End-to-end Latency with LoRa
In the main paper (Figs. 5) and 6), we show end-to-end

latency evaluations using a challenged wireless network,
where we assume the data rate is only 100 Kbps. Here, we
consider LoRa [9], a further challenged network condition
whose maximum data rate is 37.5 Kbps, and perform another
end-to-end latency evaluation using the same experimental
configurations (see Table 3).

Figures S1 and S2 show the end-to-end latency evaluation
results for Jetson Nano and Jetson NX Xavier (top: CUDA
OFF, bottom: CUDA ON) as mobile devices, respectively.
Note that the new experimental configuration does not affect
the performance of the local computing (LC) baselines in
Figs. 5 and 6 since the LC baselines do not offload compu-
tation to the edge server. In other words, the configuration
makes it more difficult for the SC baselines and our pro-
posed method to outperform the LC baselines as the lower
communication data rate will further delay communications
between mobile devices and edge (cloud) servers.

The overall trends in Fig. S1 are similar to those in Fig. 5
in the main paper. Our multi-task models (Ladon) saved up
to 90.1% and 96.7% of the end-to-end latency with the LC
and SC baselines, respectively. Using Jetson NX Xavier in

this scenario (Fig. S2) made the LC baselines even stronger.
While giving the LC baselines more advantage, the Ladon
models reduced the end-to-end latency of the LC and SC
baselines by up to 83.8% and 97.6% respectively.

C. Local GMAC and Peak Local Memory Usage
In this section, we briefly discuss computational loads

on mobile device using local GMAC (Giga Multiply-
Accumulate Operation) and peak local memory usage met-
rics. As shown in Figure S3, our approach consistently
achieved lower GMAC on mobile devices than baseline meth-
ods considered in this study, saving up to 97.0% and 88.7%
of local GMAC for the LC and SC baselines, respectively.

Table SI presents peak memory usage measured during
our multi-task experiments. Note that the reported memory
consumption may include those of background jobs running
on the mobile devices. Overall, our approach improved peak
memory usage on mobile devices over the baseline methods.
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Table SI. Peak local memory usage [GB] during multi-task experi-
ments. Reported numbers may include memory consumption by
background jobs on mobile devices.
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