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Appendix
In this document, we provide the additional details and

experimental results of our approach. The supplementary
material is structured as follows:

(A) Ablation Study

• Fairness in adversarially trained models.

• Ablations on uniform sampling of targets.

• Ablations on constant perturbation margin during AT.

• Ablations on epsilon scaling.

(B) Additional Experimental Results

• Experimental results with PRN-18 on CIFAR-10 over
mutliple seeds.

• Experimental results with XCiT-S12 on CIFAR-10.

• Overall accuracy results on common corruptions.

A. Ablation Study
A.1. Fairness in Adversarially Trained Models.
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Figure 1. Class-wise accuracy Cacc on the CIFAR-10 dataset using
adversarially trained models.

We conducted an experiment on the CIFAR-10 dataset
using robust models trained adversarially, sourced from a
standard adversarial benchmark [1]. Figure 1 shows the
class-wise robustness accuracies (Cacc) on the CIFAR-10
dataset. It illustrates the class-wise accuracy of different ad-
versarially trained models on clean validation samples from

the CIFAR-10 dataset. The disparity in class-wise accuracies
are clearly visible, which means the adversarially trained
models are not fair. The dotted lines in the Figure 1 represent
the overall accuracies of the respective models. The overall
accuracy of each model allows us to categorize classes into
two groups: Easy classes and Hard classes. This categoriza-
tion is based on whether a class has a class-wise accuracy
above or below the model’s average overall accuracy. Easy
classes are easy to predict and hard classes are often hard to
distinguish. This pattern remains consistent across different
model architectures. Therefore training a fair robust model
is very important. Our approach aims to work on this robust
fairness issue.

A.2. Ablation on Uniform Sampling of Targets

In this section, we compare our approach, FAIR-TAT,
which samples targets based on the class-wise false posi-
tive prior distribution, to a uniform target sampling method
during targeted adversarial training. This comparison demon-
strates the effectiveness of using class-wise false positive
information in target sampling, highlighting its benefits in
preserving overall accuracy and improving the worst-class
accuracy.

We refer to our approach, which employs class-wise false
positive target selection, as FAIR-TAT(CTP). Conversely,
we denote the approach that uses uniform target sampling
during training as FAIR-TAT(UTP) in Table 1. The results
in the table present PGD evaluations using PRN-18 on the
CIFAR-10 dataset. It should also be noted that the pertur-
bation margins for the classes are customized as described
in [3] during the training of these approaches. From Table
1, it is clear that sampling targets based on class-wise false
positive scores improves model robustness and fairness com-
pared to uniform sampling of targets. This improvement
arises from assigning more weight to classes that are more
prone to misclassification during training. Thus, our results
demonstrate the effectiveness of incorporating class-wise
false positive scores when sampling targets for targeted ad-
versarial training scenario of our approach. We observe the
same trend with different weight averaging techniques EMA
and CFA as well.



Table 1. Comparison of PGD evaluations of FAIR-TAT framework with its variants.

Method PRN-18 (Clean Accuracy) PRN-18 (Robust Accuracy)

Overall Worst Class Overall Worst Class

FAIR-TAT (UTS) 85.0± 0.2 70.9± 2.3 46.2± 0.5 18.4± 0.9
FAIR-TAT (CTS) ◆ 85.5± 0.3 71.3± 1.8 46.6± 0.6 19.7± 1.1

FAIR-TAT (UTS) + EMA 85.1± 0.6 72.2± 0.8 47.4± 0.3 21.2± 0.5
FAIR-TAT (CTS) + EMA ◆ 86.0± 0.4 73.0± 0.7 47.7± 0.3 22.1± 0.9

FAIR-TAT (UTS) + CFA 83.0± 0.4 70.2± 1.3 47.8± 0.2 23.3± 0.8
FAIR-TAT (CTS) + CFA ◆ 84.8± 0.3 72.0± 0.9 48.3± 0.5 24.6± 1.0

Table 2. Comparison of PGD evaluations of FAIR-TAT framework with constant perturbation margin during training.

Method PRN-18 (Clean Accuracy) PRN-18 (Robust Accuracy)

Overall Worst Class Overall Worst Class

AT 84.0± 0.2 66.4± 1.3 45.6± 0.2 16.9± 1.1
FAIR-TAT (UTS) 87.3± 0.1 73.8± 2.9 43.6± 0.7 19.0± 1.9
FAIR-TAT (CTS) 87.3± 0.3 73.2± 1.7 43.5± 0.6 17.7± 2.7

AT + EMA 84.7± 0.3 68.5± 0.9 47.6± 0.1 18.6± 0.6
FAIR-TAT (UTS) + EMA 88.0± 1.5 75.9± 1.0 44.5± 0.5 20.1± 0.4
FAIR-TAT (CTS) + EMA 87.8± 0.2 74.9± 0.9 44.6± 0.3 19.0± 1.2

AT + CFA 84.6± 0.3 69.5± 1.5 48.3± 0.2 21.8± 0.6
FAIR-TAT (UTS) + CFA 87.3± 0.4 74.8± 1.1 45.9± 0.5 23.0± 2.4
FAIR-TAT (CTS) + CFA 86.0± 3.2 73.3± 7.4 44.8± 0.3 22.3± 1.4

A.3. Ablations on Constant Perturbation Margin
during AT.

In this section, we assess the efficacy of our approach
when the perturbation margin ϵ is kept constant during the
training process. For a fair comparison, we use vanilla ad-
versarial training (AT) as a baseline, which also employs a
constant perturbation margin on the CIFAR-10 dataset us-
ing the PRN-18 architecture. Additionally, we evaluate our
method under different target sampling schemes, as well as
conventional AT, using various weight averaging schemes.

Table 2 presents the results of our approach under two
conditions: Uniform Target Sampling (UTS) and Class-wise
False Positive Target Sampling (CTS), compared to the base-
line AT. The results indicate that FAIR-TAT (UTS) with a
constant perturbation margin ϵ performs well in terms of fair-
ness, showing improved worst-class accuracies compared
to the baseline. Furthermore, FAIR-TAT (UTS) and FAIR-
TAT (CTS) increases the overall clean accuracy, although the
overall robustness decreases significantly when compared to
the baseline. This observation holds across different weight
averaging schemes.

For results using a customized perturbation margin, refer
to Table 1. From Table 1, it is evident that adjusting the per-
turbation margin during targeted adversarial training allows
for adjusting attack strengths across different classes. Harder
classes are assigned a smaller margin, while easier classes

receive a larger margin, as described in [3]. Interestingly,
FAIR-TAT with uniform target sampling performs slightly
better with a constant ϵ than class-wise false positive target
sampling with a constant ϵ. FAIR-TAT (UTS) also demon-
strates superior fairness in terms of clean sample accuracy
when considering all versions of our method.

However, the combination of customized margins and
class-wise false positive target sampling (CTP) in FAIR-
TAT offers better trade-offs between robustness and fairness,
considering both robust and clean samples. Thus, comparing
Table 1 and Table 2, we conclude that the combination of
FAIR-TAT (CTP), customized perturbation margins, and
effective weight averaging leads to a robust and fair classifier.

A.4. Ablations on Epsilon Scaling.

It is well known that targeted adversaries are weaker than
untargeted adversaries. Thus, we adjust the perturbation
margin for each class during adversarial training (AT) using
the update equation:

ϵk ← (λ1 + rk)ϵ.

This perturbation margin update for each class, ϵk, depends
on the robust class-wise accuracy performance, rk, so that
the perturbation margin for the individual class adjusts ac-
cording to the model’s performance on this class. This en-
sures the strength of the adversaries for each class during
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Figure 2. Epsilon scaling during AT for FAIR-TAT and CFA method respectively on 10 classes of CIFAR10 in order.

AT. The Figure 2 showcases the class-wise perturbation mar-
gin for both our approach FAIR-TAT and CFA (which uses
an adaptable class-wise perturbation margin during untar-
geted adversarial training) on the CIFAR10 dataset using
the PRN-18 architecture. This provides intuition regarding
the strength of adversaries for both targeted and untargeted
setups during the dynamic training scheme. The perturbation
margin, ϵ, for hard classes is lower than for easier classes,
and the ϵ values for the targeted scenario are greater than
those for the untargeted scenario during the training. This
balance ensures that the attack strength is balanced consider-
ing the targeted and untargeted adversaries.

Furthermore, the variance introduced by including tar-
geted adversaries in the adversarial training of our approach
is enhanced when we sample the targets from the prior dis-
tribution of class-wise false positive scores. This additional
degree of freedom in the training process is intentional and
helps to guide the sampling towards vulnerable classes dur-
ing adversarial training, ultimately improving model fair-
ness.

B. Additional Experimental Results

B.1. Experimental Results with PRN-18 on CIFAR-
10 over Mutliple Seeds.

In this section, we present the evaluations of our approach
using PRN-18 on CIFAR-10 over 5 random seeds. Table 4
highlights the PGD evaluations, comparing our method,
adapted to other approaches, to baseline methods on CIFAR-
10. From our observations, it is clear that our approach, utiliz-
ing the weight averaging technique from CFA [3], provides
enhanced model fairness, as it incorporates a fairness-aware
weight averaging scheme.

Similarly, Table 5 presents the evaluations using stan-
dard AutoAttack and a black box attack named Square At-
tack, comparing our method against baseline approaches on
CIFAR-10 over 5 seeds. The results follow the same trend,
with our approach demonstrating improved fairness through

the appropriate weight averaging scheme, while maintaining
overall robust accuracy. Also, our approach provides better
performance considering robustness and fairness on clean
samples.

B.2. Experimental Results on XCiT-S12 on CI-
FAR10

Most of the works related to fairness consider CNN based
models, as they are easy to train adversarially compared to
transformer based models. Therefore the fairness is often
validated on CNN based models. To further validate the effi-
cacy of FAIR-TAT, we use XCiT-S12, a transformer based
model sourced from robustness benchmark. In Table 3, we
compare our results to the model trained using vanilla ad-
versarial training. We train XCiT following the recipe of
adversarial fine-tuning as mentioned in [2]. Table 3 shows
the PGD evaluations of FAIR-TAT vs baseline adversarial
training on CIFAR-10. Evaluations in the table indicate that
FAIR-TAT is fair on transformer based models as well.

Table 3. Comparison of PGD evaluations of FAIR-TAT framework
using XCiT on CIFAR10. Our method is marked with ◆.

Method XCiT-S12 (Clean Accuracy) XCiT-S12 (Robust Accuracy)

Overall Worst Class Overall Worst Class

AT 89.6 79.8 62.1 30.2
FAIR-TAT ◆ 92.7 80.3 61.7 31.7



Table 4. Comparison of PGD evaluations of FAIR-TAT framework with other methods focused on model fairness using PRN-18 on
CIFAR-10 over 5 seeds. Our method is marked with ◆.

Method PRN-18 (Clean Accuracy) PRN-18 (Robust Accuracy)

Overall Worst Class Overall Worst Class

AT 83.5 ± 0.3 66.8 ± 2.7 48.2 ± 0.3 19.6 ± 2.0
FAIR-TAT ◆ 85.5 ± 0.2 71.3 ± 2.1 46.6 ± 0.2 19.7 ± 2.0

AT + EMA 83.8 ± 0.2 66.6 ± 1.3 49.6 ± 0.2 21.0 ± 0.5
FAIR-TAT + EMA ◆ 86.0 ± 0.2 73.0 ± 0.5 47.7 ± 0.2 21.7 ± 0.5

AT + CFA 83.8 ± 0.2 68.1 ± 1.1 50.1 ± 0.2 22.8 ± 1.4
FAIR-TAT + CFA◆ 84.8 ± 1.1 72.0 ± 3.4 48.3 ± 1.1 24.6 ± 2.4

TRADES 82.0 ± 0.4 64.7 ± 1.4 52.9 ± 0.4 25.9 ± 1.7
FAIR-TAT + TRADES ◆ 81.7 ± 0.1 67.7 ± 1.1 52.3 ± 1.1 25.5 ± 0.7

TRADES + EMA 82.4 ± 0.1 65.3 ± 0.7 53.8 ± 0.1 25.3 ± 0.6
FAIR-TAT + TRADES + EMA ◆ 82.1 ± 0.2 68.4 ± 0.8 53.1 ± 0.2 26.8 ± 0.8

TRADES + CFA 82.3 ± 0.2 65.4 ± 0.7 53.7 ± 0.2 25.2 ± 0.2
FAIR-TAT + TRADES + CFA ◆ 82.1 ± 0.2 68.6 ± 1.0 53.1 ± 0.2 26.9 ± 0.8

FAT 84.8 ± 0.3 69.3 ± 1.1 48.0 ± 0.3 18.7 ± 0.8
FAIR-TAT + FAT ◆ 86.6 ± 0.3 77.2 ± 0.9 46.1 ± 0.3 22.7 ± 0.8

FAT + EMA 85.1 ± 0.2 69.5 ± 1.4 49.0 ± 0.2 19.5 ± 0.9
FAIR-TAT + FAT+ EMA ◆ 86.8 ± 0.2 75.4 ± 1.4 47.7 ± 0.2 22.3 ± 0.9

FAT + CFA 85.0 ± 0.6 71.0 ± 1.2 51.0 ± 0.6 23.4 ± 0.3
FAIR-TAT + FAT + CFA ◆ 86.1 ± 0.2 74.9 ± 1.1 48.2 ± 0.2 24.4 ± 5.2

FRL 82.8 ± 0.1 71.4 ± 2.4 45.7 ± 0.3 24.4 ± 1.0
FRL + EMA 83.6 ± 0.3 69.5 ± 0.7 46.3 ± 0.2 24.8 ± 0.4
BAT + TRADES 86.5 ± 0.1 73.4 ± 1.4 49.8 ± 0.2 22.1 ± 0.9
WAT + TRADES 81.2 ± 0.3 65.9 ± 2.0 47.1 ± 0.3 26.3 ± 0.9

Clean Training 94.0 ± 0.3 79.4 ± 2.4 2.7 ± 0.7 0

Table 5. Comparison of AutoAttack and Squares evaluations of FAIR-TAT framework with other methods focused on model fairness using
PRN-18 on CIFAR-10 over 5 seeds. Our method is marked with ◆.

Method PRN-18 (AutoAttack) PRN-18 (Squares)

Overall Worst Class Overall Worst Class

AT 45.7 ± 0.3 15.4 ± 1.6 51.3 ± 0.2 19.4 ± 1.3
FAIR-TAT ◆ 45.0 ± 0.2 18.7 ± 1.7 51.8 ± 0.1 26.7 ± 0.7

AT + EMA 45.6 ± 0.2 15.4 ± 1.8 51.7 ± 0.2 19.7 ± 0.4
FAIR-TAT + EMA ◆ 45.0 ± 0.3 18.8 ± 0.4 51.8 ± 0.3 26.7 ± 0.7

AT + CFA 47.4 ± 0.8 19.3 ± 0.3 51.7 ± 0.2 19.9 ± 0.4
FAIR-TAT+CFA ◆ 47.0 ± 1.3 24.8 ± 2.1 52.6 ± 0.8 31.3 ± 1.2

TRADES 49.8 ± 0.2 18.7 ± 1.1 54.0 ± 0.3 22.4 ± 0.2
FAIR-TAT + TRADES ◆ 48.6 ± 0.1 20.8 ± 1.3 52.6 ± 0.2 26.1 ± 0.4

TRADES + EMA 49.8 ± 0.2 18.6 ± 0.4 54.0 ± 0.3 22.4 ± 0.2
FAIR-TAT + TRADES + EMA ◆ 48.6 ± 0.3 21.1 ± 0.6 52.6 ± 0.2 26.1 ± 0.4

TRADES + CFA 50.3 ± 0.1 21.3 ± 0.3 54.2 ± 0.3 22.6 ± 0.4
FAIR-TAT + TRADES + CFA ◆ 49.8 ± 0.3 24.0 ± 0.8 53.0 ± 0.5 25.8 ± 0.9

FAT 44.2 ± 0.3 16.0 ± 1.1 50.8 ± 0.2 20.8 ± 0.1
FAIR-TAT + FAT ◆ 44.6 ± 0.2 17.9 ± 0.8 51.5 ± 0.4 26.3 ± 0.3

FAT + EMA 44.2 ± 0.1 15.9 ± 0.9 50.8 ± 0.2 20.8 ± 0.1
FAIR-TAT + FAT+ EMA ◆ 44.6 ± 0.2 18.1 ± 0.7 51.5 ± 0.4 26.3 ± 0.3

FAT + CFA 49.4 ± 0.1 22.6 ± 0.8 53.4 ± 0.1 24.1 ± 0.5
FAIR-TAT + FAT + CFA ◆ 44.3 ± 0.3 22.1 ± 2.1 49.0 ± 0.6 24.4 ± 0.3

FRL 44.0 ± 0.2 23.2 ± 1.2 49.7 ± 0.3 24.6 ± 0.9
FRL + EMA 44.2 ± 0.3 23.9 ± 0.4 50.8 ± 0.6 24.9 ± 0.3
BAT + TRADES 45.9 ± 0.4 18.7 ± 1.2 52.3 ± 0.4 23.8 ± 0.7
WAT + TRADES 47.1 ± 0.3 24.5 ± 1.1 51.7 ± 0.3 25.6 ± 0.9



Table 6. Overall accuracies of FAIR-TAT method on common corruptions along with combination of TRADES (T) and FAT(F) approaches
using PreActResNet-18 on CIFAR-10C dataset.

Corruption Type FAIR-TAT FAIR-TAT (EMA) FAIR-TAT (CFA) FAIR-TAT (T) FAIR-TAT
(T+EMA)

FAIR-TAT
(T+CFA)

FAIR-TAT (F) FAIR-TAT
(F+EMA)

FAIR-TAT
(F+CFA)

gaussian_noise 80.6 81.6 79.0 78.5 76.3 76.3 82.2 82.5 73.3
shot_noise 81.7 82.6 80.1 79.3 77.5 77.3 83.1 83.6 74.5
speckle_noise 81.5 82.6 80.2 79.3 77.3 77.3 82.9 83.6 74.1
impulse_noise 71.5 72.7 72.3 74.9 72.2 72.2 73.0 74.1 66.5
defocus_blur 80.3 80.6 76.5 76.8 76.6 76.6 81.0 81.2 68.1
gaussian_blur 78.0 78.3 73.7 74.6 74.5 74.4 78.5 78.7 64.4
glass_blur 76.3 76.4 71.9 73.2 73.1 73.0 76.9 77.2 62.4
motion_blur 79.1 79.5 75.2 75.6 75.7 75.7 80.2 80.5 65.5
zoom_blur 78.8 79.5 77.2 75.2 76.3 76.2 80.1 80.3 72.0
snow 56.1 56.4 50.6 53.4 53.0 53.0 58.3 57.7 39.6
frost 82.6 82.7 79.9 77.0 78.2 78.2 83.1 83.0 74.3
fog 41.0 40.5 35.6 38.4 38.1 38.0 42.5 41.6 28.7
brightness 79.2 79.8 75.9 76.0 75.6 75.5 80.4 80.6 67.1
contrast 83.4 83.9 80.8 80.0 79.6 79.5 84.3 84.5 74.1
elastic_transform 82.9 83.6 80.6 80.2 79.6 79.5 84.1 84.4 74.7
pixelate 80.0 81.0 79.0 78.3 76.8 76.8 81.7 81.9 73.6
jpeg_compression 81.6 82.3 80.6 78.6 77.6 77.6 82.6 83.0 76.0
defocus_blur 75.8 75.8 71.3 68.1 70.8 70.8 76.2 75.8 63.7

Table 7. Overall accuracies of baselines on common corruptions along with combination of TRADES (T) and FAT(F) approaches using
PreActResNet-18 on CIFAR-10C dataset.

Corruption Type AT AT(EMA) AT(CFA) AT(T) AT(T+EMA) AT(T+CFA) AT(F) AT(F+EMA) AT(F+CFA)

gaussian_noise 79.0 80.0 79.8 77.6 78.2 76.3 80.2 80.8 78.9
shot_noise 80.0 80.9 80.6 78.5 79.4 77.5 81.3 81.9 80.1
speckle_noise 79.9 80.7 80.5 78.4 79.2 77.3 81.4 81.9 80.0
impulse_noise 74.5 75.1 75.0 73.7 74.5 72.2 75.0 75.2 74.0
defocus_blur 78.6 79.0 78.9 77.9 78.2 76.6 79.9 80.1 77.6
gaussian_blur 76.6 76.8 76.6 76.1 76.3 74.5 77.7 77.6 75.0
motion_blur 74.7 74.9 75.0 74.7 75.0 73.1 75.9 76.0 72.8
zoom_blur 77.6 77.9 77.8 77.2 77.5 75.7 79.4 79.3 76.5
snow 75.6 77.3 77.8 76.3 76.2 77.5 76.7 78.3 77.5
fog 58.1 56.3 55.8 57.8 58.0 53.0 59.1 57.5 52.8
brightness 78.4 79.7 80.1 78.3 78.1 78.2 79.7 80.9 79.8
contrast 42.7 40.5 40.2 41.4 42.0 37.3 43.8 41.7 37.3
elastic_transform 77.4 78.1 78.0 76.9 77.2 75.6 79.1 79.4 77.0
pixelate 81.2 82.0 82.0 80.3 80.6 79.6 82.7 83.1 81.3
jpeg_compression 81.1 81.8 81.8 80.1 80.3 79.6 82.6 83.0 81.4
spatter 77.9 79.1 79.1 78.9 78.3 76.8 79.2 80.0 79.2
saturate 78.7 79.9 79.9 78.1 78.4 77.6 80.3 81.0 80.4
frost 69.3 71.6 72.5 70.7 70.2 70.8 70.9 73.3 70.7

B.3. Overall accuracy results on common corrup-
tions.

We evaluate the robustness and fairness of the adversar-
ial model trained using our approach on common corrup-
tions, and compare it to baseline methods. For this evalua-
tion, we utilize the CIFAR-10C dataset, which contains 18
types of corruptions applied to CIFAR-10 images, using the
PreActResNet-18 (PRN-18) architecture.

Table 6 and Table 7 present the overall accuracies for our
method and the baselines, respectively. Table 6 shows the
overall accuracies of the model using FAIR-TAT, adapted
to various approaches on CIFAR-10C, while Table 7 lists
the overall accuracies of the baseline methods. The best
results on common corruptions for both our method and the
baselines are underlined in the tables.

Our approach, FAIR-TAT, particularly when adapted to
the baselines, notably FAT, consistently outperforms the
baselines in terms of overall model performance on common
corruptions. In summary, our findings indicate that FAIR-
TAT enhances both robustness and fairness when compared
to existing methods on common corruptions. We conclude
that FAIR-TAT achieves a better-balanced trade-off between
robustness and fairness, as demonstrated by our evaluations

on both adversaries and common corruptions.
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