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1. Additional Training Details

The FashionMNIST dataset is an alternative to the orig-
inal MNIST dataset, providing a more challenging task by
replacing the handwritten digits with grayscale images of
various fashion items. The dataset consists of 60,000 train-
ing images and 10,000 test images. The PathMNIST dataset
is a medical dataset of colon pathology images in RGB, with
a training set of 89,996 images and a test set containing
7,180 images with 9 classes. The CIFAR-10 dataset con-
sists of 60,000 color images equally distributed into ten dif-
ferent classes. The dataset is composed of a training set con-
taining 50,000 images and a test set comprising of 10,000
images. CIFAR-10 is natively sized at 32x32 pixels. We
upsample FashionMNIST and PathMNIST from 28 x28 to
32x32. A visualization of the dataset partitioning across
clients is shown in Figure 1.

We train with a batch size of 128 for all methods and use
the AdamW optimizer. For local (and global training were
applicable), we searched learning rates from [3e=3, 1le~3,
3e~%, 1le~*] for each method using the CIFAR-10 dataset
to find the optimal settings. We employed a ResNet16 ar-
chitecture for the global model of all methods to ensure a
fair comparison. For DP experiments, we set the max gra-
dient norm clipping threshold to 1.0 for all experiments and
methods. In accordance with the recommendations of the
Opacus [5] library, we employ their Poisson batch sampling
to ensure privacy guarantees.

As mentioned in Section 3.1 of the main paper, our DM
is a basic U-Net structure with residual blocks [3, 4] and
class-conditioning. Specifically, our U-Net has three down-
sampling stages (1/8 total downsampling) and three upsam-
pling stages, each with residual convolutional blocks. A
learnable embedding for time step and class conditioning is
concatenated as additional input channels. For FedDiffg,
we halve the number of channels per block to reduce model
size. For sampling at the server, we perform 1000 itera-
tions as in [3] to generate each batch. The total number
of generated samples is set equal to the size of the origi-
nal dataset. Code available at https://github.com/

mmendiet /FedDiff.
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Figure 1. Dir(«) data partitioning for 10 clients on CIFAR-10.
We show moderate (o« = 0.1) to severe (« = 0.01) data hetero-
geneity levels. Data heterogeneity poses a significant challenge for
many one-shot FL methods, as reconciling various models trained
on widely different distributions is non-trivial. Our FedDiff ap-
proach rather trains diffusion models on the simple client distri-
butions, which can then generate useful synthetic data for training
global models.

2. Communication and Server-side Operations

All methods primarily involve transmitting the model
weights to the server, and this is done a single time. Addi-
tionally, specific information is sent. FedAvg and DENSE
transmit the number of samples and label space, while Fed-
CVAE and FedDiff send the number of samples per la-
bel. Thus, communication cost is mainly determined by
the model size and number of clients. To ensure fairness
between generative and discriminative methods, we select
models with similar parameters and FLOPs, as shown in
Table 3, maintaining comparable communication and com-
putation costs. We describe details of our DM architectures
in Section 1. As we also show in our experiments with
FedDiffg in Table 3 of the main paper, we can adjust the
size of the model to meet communication or compute needs
and still provide exceptional performance.

Once the models are on the server, different operations
are required for each method. DENSE, FedCVAE, and Fed-
Diff require server-side generation and training, producing
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Figure 2. Ablation study of v in FMF under the € = 10 setting. The accuracy of FedDiff is in green and FedDiff+FMF for various y
in blue. Generally, data filtering within the range of 1% to 10% produces positive outcomes, resulting in improved performance, with
approximately 5% serving as an effective default choice. We plot the mean across three runs with different seeds for each setting.

a dataset the same size as the original (e.g., 50k for CIFAR-
10) and training a global model for 200 epochs. Server-side
operation times on a single A5000 GPU for CIFAR-10 with
10 clients are 3.36, 1.76, and 2.17 hours for DENSE, Fed-
CVAE, and FedDiff, respectively. DENSE takes the longest
due to nested training of a GAN and the global model.
Nonetheless, server computation is not a primary concern
in FL, as it is not constrained by the same resource limita-
tions as client devices.

3. Sampling Steps for Generation Ablation

Diffusion models generate images through consecutive
denoising steps, making the number of iterations per im-
age a design choice when generating synthetic datasets at
the server. Table 1 provides insights into the impact of
adjusting this parameter. Generally, increasing the num-
ber of steps enhances data quality and improves the final
global model performance, particularly for the more diffi-
cult datasets. However, if generation time on the server is a
concern, this parameter can be reduced, or increased when
prioritizing data quality and model accuracy.

Table 1. Ablation on number of diffusion steps (S) used per image
when generating the global synthetic dataset. Final global model
accuracy is reported using our FedDiff approach under the default
setting of @ = 0.01 and C' = 10. The 1000-step setting is em-
ployed across all other experiments in the paper, as it is the stan-
dard practice in DDPM [3].

Dataset S =100 S = 500 S = 1000 S = 2000
FashionMNIST ~ 86.49+0.23  86.63+0.38 86.81+0.54  86.75+0.17

PathMNIST 69.85+1.15 70.13x1.61 70.61£1.37 71.44+1.83
CIFAR-10 55.89£1.93 56.13+£1.74 56.57+2.42 57.74+2.86
4. FMF ~ Ablation

In Figure 2, we present the outcomes obtained using Fed-
Diff+FMF under ¢ = 10 across a range of 7 values, en-

compassing data filtering percentages spanning from 1% to
12%. Our findings indicate that, in general, data filtering
within the 1% to 10% range yields favorable results and
leads to performance enhancements, with around 5% be-
ing a great default. Interestingly, the degree of improvement
provided by FMF becomes more pronounced and consistent
as the dataset becomes more challenging. This phenomenon
aligns with the anticipated trends, as more intricate datasets
inherently pose a greater challenge, making it less likely for
the generators to consistently produce high-quality samples.
Consequently, the need for data filtering becomes more pro-
nounced in such scenarios to enhance sample quality. This
trend is also favorable since it addresses the specific need
for improvement, especially in cases where performance is
suboptimal and the challenges are more pronounced.

5. Discussions, Limitations and Broader Im-
pact

Model Heterogeneity. In real FL systems, model het-
erogeneity may often occur [2,6]. For instance, some clients
may have architecture variations in their models or have
smaller or larger models depending on their computing ca-
pabilities. Therefore, clients may have different architec-
tures of similar generation capability, or even differing ca-
pabilities depending on the requirements of each client. Our
approach allows for flexibility to accommodate such system
diversity across clients. In FedDiff, we generate data from
the client models and employ that synthetic data for global
training, and therefore can leverage varying models without
the worry of reconciling the weights themselves.

Limitations and Broader Impact. One downside of
our method is that the generated data, particularly under DP
constraints, still lacks in quality and effectiveness for global
model training versus using true data. For instance, with DP
on CIFAR-10 as shown in Figure 4 in the main paper, the
data loses a substantial amount of structure. An interesting
direction for future work would be to study how to further



improve the quality of the generated data and its usefulness
for global model training while maintaining privacy. For in-
stance, as differential privacy algorithms improve, FedDiff
and the generated data quality will likewise benefit. Addi-
tionally, potentially leveraging prior information could al-
low the models to focus on task-relevant features, excluding
irrelevant ones. By training a separate model to identify im-
portant features and then learning to generate images based
only on these features with a DP secure model, we could
potentially simplify the information needed for the genera-
tion process. This would likely lead to quicker convergence,
allowing for better learning in DP settings with the same
privacy budget and ultimately improving the privacy-utility
trade-off of the generated samples.

Looking at the broader impact of our work, FL depends
on the diversity of data contributed by different participants.
If biases exist in the local datasets, they can be propagated
and amplified during the model training process. This could
lead to unintended algorithmic biases and discrimination in
the resulting models. Ensuring diversity and fairness in the
data used for FL is an important research direction to mit-
igate this risk and promote equitable outcomes [1], partic-
ularly in the highly data heterogeneous environments ex-
plored in this work. Furthermore, as we have discussed
throughout our paper, the privacy of client data is impor-
tant in FL. To mitigate risks in this regard, we take many
precautions to preserve privacy of the clients participated in
the FL process though the use of DP, and operating within
the one-shot setting to reduce the chance of eavesdropping.
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