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1. More Implementation Details
Objaverse Dataset Filtering In line with the methodolo-
gies proposed in [3, 5], we curate the Objaverse dataset to
improve the quality of 3D assets considered during training.
We used the following filtering criteria:

• Number of Faces. To ensure a focus on single-object
generations, we selected assets comprising fewer than
400,000 triangles, effectively filtering out complex
scenes containing multiple objects.

• Number of Geometries (Mesh Parts). Similarly, we
limited our selection to objects containing fewer than
200 distinct geometries.

• Presence of Additional Texture Maps. Assets lacking
a metallic-roughness texture map were excluded. This
decision was based on our finding that such textures
are usually indicative of higher-quality 3D models.

While these filtering criteria served our research well,
we recognize the possibility of further enhancements. We
thus direct readers interested in more sophisticated curation
methods to the approach detailed in [5].

VAE losses We follow 3DGen and combine a mask sil-
houette loss, a depth loss, a laplacian smoothness loss
and a KL divergence loss to supervise the geometry VAE:
Lgeometry = αLmask+ϕLdepth+λLsmooth−γDKL, with
α = 3 , ϕ = 10, λ = 0.01, and γ = 10−7. We use a sum of
L1 and L2 losses to supervise the color VAE.

VAE optimization hyperparameters We train our VAE
models for 15 epochs, using a batch size of 16, an initial
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learning rate of 3 × 10−5 and a cosine annealing sched-
ule down to a minimum learning rate of 10−6. This takes
roughly a week on 8 A100s.

Stage 2 optimization hyperparameters We use a batch
of 192 hexaviews for the hexaview diffusion and hexaview-
to-triplanar mapping tasks, and a batch of 32 regular images
for 2D regularization. We down-weigh the diffusion loss
coming from the 2D regularization batches by a factor 0.25.
We train our latent generative models for 50, 000 iterations
using a learning rate of 3×10−5. This takes roughly 4 days
on 8 A100s.

Baselines Implementation We select a range of recent
text-to-3D approaches for comparison with HexaGen3D,
including a feedforward approach, Shap-E [4], and three
SDS-based approaches, DreamFusion [8], TextMesh [11],
and MVDream [10]. While we use the official implemen-
tation of Shap-E* and MVDream†, we leverage the Dream-
Fusion and TextMesh implementations available within the
threestudio framework [2], which include some notable de-
viations from their original papers. Specifically, our Dream-
Fusion setup uses the open-source StableDiffusion v2.1
as the guidance model instead of Imagen [9], and a hash
grid [7] as the 3D representation, diverging from Mip-
Nerf360 [1]. TextMesh similarly utilizes StableDiffusion
v2.1 for guidance, with NeuS [12] replacing VolSDF [13]
for the 3D signed distance field representation.

2. Evaluation of 3D Generations Through User
Studies

In our investigation aimed at assessing the visual quality
and adherence to prompts of text-to-3D generations, we uti-
lized 67 prompts sourced from DreamFusion [8]. For each
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(a) Evaluating the approaches for “visual quality”. (b) Evaluating the approaches on “text prompt fidelity”.

Figure 1. User study comparing all the text-to-3D approaches on (a) visual quality and (b) text prompt fidelity. Each cell indicates the
user preference score (%) for an approach (row) over another (column). The approaches are: MVDream-SDv2.1 (MV-SD), DreamFusion-
SDv2.1 (DF-SD), Shape-E, TextMesh-SDv2.1 (TM-SD), HexaGen3D-SDv1.5 (Ours-SD), and HexaGen3D-SDXL (Ours-XL).

prompt, across various methods, we generated four images
with a rendering angle of 45◦ azimuth and 30◦ elevation.
The evaluated methods included MVDream-SDv2.1 [10],
TextMesh-SDv2.1 [11], DreamFusionv2.1 [8], Shap-E [4],
HexaGen3D-SDv1.5, and HexaGen3D-SDXL. Participants
were involved in pairwise evaluations of these methods,
focusing on either visual quality or prompt fidelity. For
each evaluation, participants were presented with two
anonymized sets of four renderings from the same prompt,
generated by two different methods (A and B), and asked to
express their preference using a five-point scale: “A is sig-
nificantly better”, “A is slightly better”, “No Preference”,
“B is slightly better”, and “B is significantly better”. The
user responses were binarized to compute the final metrics.

User Study 1: Visual Quality Assessment. The primary
focus of the first user study was on the visual quality of the
3D renderings. Twelve participants were instructed to eval-
uate and compare the visual quality of the outcomes pro-
duced by the different methods. Each participant assessed
average 90 random result pairs, generating more than 360
data points per method and on average 72 comparisons be-
tween each possible method pair.

User study 2: Prompt Fidelity. The second user study
focused on how well the generated 3D assets aligned with
the textual prompts provided by users. In this phase, nine
participants were asked to evaluate the outcomes based on
their adherence to the original text prompts.

The comprehensive results of these studies are illustrated
in Fig. 1 where we report the pair-wise preference score of
any method (rows) over any other method (columns).

3. Extended Results from HexaGen3D-SDXL
More Results from MS-COCO Prompts. Leveraging a
2D pre-trained diffusion model significantly enhances gen-
eralization to uncommon objects or combinations thereof,
which were not encountered during the fine-tuning phase.
This allows HexaGen3D to handle a broad range of tex-
tual prompts effectively. To illustrate this capability, we
present additional results using random captions from the
MS-COCO dataset [6], showcased in Figs. 2 and 3.

Intermediate Hexaview Visualizations. We visualize
the six-sided orthographic projections generated by
HexaGen3D-SDXL for a variety of prompts from MS-
COCO [6] prompts along with the corresponding final 3D
object in Fig. 4. The generated hexaviews are highly de-
tailed and multi-view consistent.
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Figure 2. HexaGen3D-SDXL generations using random captions from the MSCOCO [6] dataset.



Figure 3. HexaGen3D-SDXL generations using random captions from the MSCOCO [6] dataset.



Figure 4. HexaGen3D produces six detailed and consistent orthographic projections as an intermediate step to 3D object generation.


	. More Implementation Details
	. Evaluation of 3D Generations Through User Studies
	. Extended Results from HexaGen3D-SDXL

