
1. Network details

1.1. Semantic segmentation network

Our pre-trained semantic segmentation network used for
semantic visual conditions in the diffusion denoising pro-
cess consists of an encoder-decoder structure that follows
a design similar to the Deeplabv3+ [3]. Here we leverage
a ResNet101 [4] encoder architecture. The encoder mod-
ule produces multi-scale semantic feature maps with res-
olution down-sampled by 1/4, 1/8, 1/16, and 1/32 of the
original image size (512×1024). These multi-scale features
are then embedded by the Atrous Spatial Pyramid Pooling
(ASPP) module. The ASPP module utilizes parallel convo-
lution layers with multiple rates of 1, 6, 12, and 18 captur-
ing an effective field of view. The low-level encoded fea-
ture and the up-sampled 128 × 256× channel-dimension
ASPP-embedded features are then concatenated and pro-
vided to the decoder module with three stages of upsam-
pling, 3 × 3 kernel convolution followed by batch normal-
ization and ReLU activation layers to produce the semantic
segmentation output 512×1024×C where C is the number
of semantic category channels.

For semantic segmentation network training, we use per-
pixel cross-entropy loss given by Eq. (1):

Lsemantic = −
∑
i

pilog(p̂i) (1)

where pi and p̂i are the ground truth and predicted pixel-
wise semantic labels, respectively. The ground truth pixel-
wise semantic labels are utilized from the dataset. For
Stanford2D3D [1] we utilize the provided ground truth se-
mantic segmentation labels which consist of 14 categories
namely unknown, beam, board, bookcase, ceiling, chair,
clutter, column, door, floor, sofa, table, wall, and window.
For Matterport3D [2] dataset we use the provided ground
truth semantic segmentation consisting of 40 semantic la-
bels namely void, wall, floor, chair, door, table, picture,
cabinet, cushion, window, sofa, bed, curtain, chest of draw-
ers, plant, sink, stairs, ceiling, toilet, stool, towel, mirror, tv
monitor, shower, column, bathtub, counter, fireplace, light-
ing, beam, railing, shelving, blinds, gym equipment, seat-
ing, board panel, furniture, appliances, clothes, and objects.

1.2. Surface normal estimation network

In addition to semantics, we also utilize predicted surface
normal information for the geometric planar guidance to the
depth denoising process. For this, we use a surface normal
estimation network. The network consists of a pre-trained
ResNet101 feature extractor, a spatial pooling module, and
a decoder architecture similar to a semantic segmentation
network. However, the last layer of the decoder produces
512× 1024× 3 shaped surface normal maps at the output.

For surface normal estimation network training, we uti-
lize negative cosine loss given by Eq. (2):

Lnormal = 1−
∑
i

N̂iN
T
i (2)

where N̂ i and Ni
T are the predicted and ground truth pixel-

wise normal values, respectively. The ground truth pixel-
wise normal values are generated from the ground truth
depth maps. For this, we first convert the panorama 360
ground truth depths to the 3D point clouds. Then we cal-
culate each pixel’s normal vector by performing the cross-
product between its 3D position and neighbors and finally
normalize the vector. This process generates a 3-channel
(due to 3D normal vector) ground truth surface normal map
from a 1-channel ground truth depth map.

1.3. Details of the conditional latent diffusion model

In this section, we discuss the details of the OmniDif-
fusion architecture as shown in Fig. 1. As mentioned in
the main paper we propose utilizing RGB (channel = 3),
semantic segmentation (channel = S: number of semantic
categories), and surface normal maps (channels = 3) as the
visual conditions for the Denoising Diffusion Probabilistic
Model (DDPM) network. Our framework utilizes a latent
space diffusion model for which we encode the visual con-
ditions of shape 512×1024×(3+S+3) to 256×512×C ′′

where C ′′ is the channel dimension. First, we divide the in-
put feature maps with shape 512×1024×(3+S+3) to mul-
tiple patches of size = 4×4 and then concatenate these patch
features with their positional embedding to be given to the
Swin transformer [9] that uses window-based self-attention
to produce effective hierarchical feature maps with shapes
128×256×C, 64×128×2C, 32×64×4C and 16×32×8C.
These hierarchical feature maps are then aggregated using
multi-scale self and cross-deformable attention mechanism
presented in DepthFormer [8] to produce an encoded fea-
ture map of shape 128 × 256 × C ′. We then up-sample
these encoded features to 256 × 512 × C ′′ to match it to
the latent ground truth depth features. We utilize the depth
encoder discussed in the main paper to encode the ground
truth depth features to produce 256 × 512 × 16 shape la-
tent depth feature map. These latent depth features are then
concatenated with the latent visual condition features to be
utilized for the conditional DDPM process.

1.4. Dataset and metric details

We perform experiments on the widely known bench-
mark datasets called Stanford2D3D [1] and Matter-
port3D [2] to evaluate the depth estimation performance.
Stanford2D3D [1] is a large-scale real-world indoor scene
dataset. In total, it consists of 1413 panorama images out of
which we use 1040 for training and 373 for testing accord-
ing to the official split. Matterport3D [2] consists of 10800



Figure 1. Details of the OmniDiffusion architecture. Here S denotes the number of semantic category channels.

RGBD images, of which we use 8786 images for training
and the rest for testing. Our network takes an ERP image of
512× 1024 resolution as input.

To evaluate the depth estimation performance we uti-
lize the widely used metrics, mentioned in the literature
work [5, 6, 12], called Absolute Relative Error (Abs Rel),
Root Mean Squared Error (RMSE), and threshold-based ac-
curacy δt, where t ∈ 1.25, 1.252, 1.253. The definitions of
the mentioned metrics are shown in Eq. (3), Eq. (4), and
Eq. (5) respectively.
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1
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∑
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di
) < (1.25n) (5)

where, d
′

is the ground truth depth value, d is the predicted
depth value and N is the total number of valid image pixels.

2. Qualitative comparison using Matter-
port3D [2] dataset

We present the qualitative depth estimation compari-
son with the existing methods listed in the main paper us-
ing the larger Matterport3D [2] dataset as shown in Fig. 2
and Fig. 3. Similar to the Stanford2D3D [1] performance
our model can recover better structure details with sharper
object boundaries/edges and globally consistent geometric
structure for Matterport3D [2] dataset as well.

3. Qualitative comparison with the existing
diffusion-based monocular depth estima-
tion models

In Fig. 4 and Fig. 5 we present the qualitative com-
parative depth performance of our OmniDiffusion method
with the existing SOTA diffusion-based methods called
VPD [13] and Ecodepth [10]. As observed, compared
to our method the existing stable-diffusion-based methods
produce low quality, blurred edges, poor geometric details,
and inconsistent depths.



Figure 2. Comparative qualitative depth estimation results on Matterport3D [2] benchmark dataset. We show the performance of Uni-
Fuse [5] (second row), HoHoNet [11] (third row), OmniFusion [7] (fourth row) and our model (fifth row) with RGB ERP input and Ground
Truth (GT) depth map shown in the first and last row respectively.
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Figure 4. Comparative qualitative depth estimation results on Stanford2D3D [1] benchmark dataset. We show the performance of VPD [13]
(second row), Ecodepth [10] (third row), and our model (fourth row) with RGB ERP input and Ground Truth (GT) depth map shown in the
first and last row respectively.



Figure 5. More comparative qualitative depth estimation results on Stanford2D3D [1] benchmark dataset. We show the performance of
VPD [13] (second row), Ecodepth [10] (third row), and our model (fourth row) with RGB ERP input and Ground Truth (GT) depth map
shown in the first and last row respectively.
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