
A. Supplementary material

B. Method details
In this section, we include additional information regard-

ing our representation and learning method.

B.1. CHOIR: Anchor assignment

Table 4. Average reconstruction error for MANO meshes fitted
onto ground-truth CHOIRs with the ordered and random anchor
assignment schemes. Mean Per-Joint Pose Error (MPJPE) and
Mean Per-Vertex Pose Error (MPVPE) are averaged across the en-
tire ContactPose [8] dataset.

Ordered Random
MPJPE (mm) 0.18 0.19
MPVPE (mm) 0.22 0.22

Tab. 4 shows that both the ordered and random anchor
assignment schemes produce the same reconstruction er-
ror when fitting a ground-truth CHOIR from the Contact-
Pose [8] dataset. The Mean Per-Joint Pose Error (MPJPE)
and Mean Per-Vertex Pose Error (MPVPE) metrics were av-
eraged across the entire dataset. Note that with ground-truth
hand-object meshes, the obtained CHOIR allows fitting a
MANO mesh with less than 1mm error.

B.2. Test-Time Optimization: Fitting loss

The Python code for the stage 1 of the TTO loss fits in a
few lines of code:

1 anchor_dist = torch.cdist(
2 bps, anchors
3 ) # Anchors predicted in TTO
4 distances = torch.gather(
5 anchor_dist, 2, anchor_ids
6 )
7 choir_loss = F.mse_loss(
8 distances, choir[..., -1]
9 ) # Agreement of anchors and CHOIR

Source Code 1. Minimal Python code for the stage 1 TTO loss.

B.3. Keypoint baseline

To evaluate the expressiveness and efficacy of each com-
ponent of CHOIR, we design a diffusion model backbone
that allows us to fit a simpler alternative to CHOIR. This
simpler representation only encodes the hand pose and
shape as 21 MANO joints jH ∈ R21×3 and 32 MANO
anchors aH ∈ R32×3. The object is encoded as a vector
of K randomly sampled surface points pO ∈ RK×3 where
we set K = 4096 to match CHOIR which uses a grid of

16×16×16 basis points. The final keypoint representation
is defined as

rkp = [pO ∈ RK×3, jH ∈ R21×3,aH ∈ R32×3]. (13)

However, as in JointDiffusion, this model learns to predict
the hand part only, defined as

rH
kp = [jH ∈ R21×3,aH ∈ R32×3] (14)

The backbone of this diffusion model is composed only
of residual blocks made of multi-layer perceptrons (MLPs).
We use 4 residual blocks with a hidden dimensionality of
512.

In effect, in this baseline, we only replace the 3D U-Net
component of JointDiffusion with a residual MLP and re-
move the contact prediction branch, while keeping cross-
attention and the same timestep conditioning scheme. The
context encoder is also replaced with a residual MLP of
hidden dimensionality 2048. We experimented with a
PointNet++-based encoder but observed a degradation in
performance.

B.4. Runtime costs

To evaluate the computational costs of CHOIR, we timed
its computation and that of TOCH [53] for 50 grasps on an
RTX 2080Ti and Intel i9-7900X. On average, TOCH takes
∼ 8.89s (±3.99) while CHOIR takes ∼ 0.13s (±0.015), a
68× reduction. When looking at the total inference time, in-
cluding the model representation computation, forward pass
and TTO, ours converges in ∼ 49s (± 16) and TOCH in
∼ 23s (± 4.3). Our diffusion model accounts for ∼ 13s of
the total (27%), hence is a major runtime bottleneck. Dif-
fusion Models are inherently slow, but they are becoming
faster, and new alternatives with similar properties can be
easily integrated since our representation is agnostic to the
learning method.

C. Additional experiments and results
C.1. Evaluation metrics

In our experiments, we use the following metrics to eval-
uate the fitted hand mesh to the predicted CHOIR:

• Mean Per-Joint Pose Error (MPJPE)/(R-MPJPE)
(mm): L2 norm between ground-truth (GT) and
predicted hand joints. We compute both absolute
(MPJPE) and root-aligned (R-MPJPE) metrics. The
former tells us about the position of the hand around
the object, and the latter tells us about the hand grasp
error regardless of the spatial pose.

• Intersection Volume (IV) (cm3): A measure of hand-
object mesh penetration. It is computed by voxelizing
the hand and object meshes (1mm voxels) and comput-
ing the volume of the intersecting voxels.



• Hand contact F1/precision/recall (%): The precision
and recall scores are measured on binary hand contact
maps obtained by upsampling the MANO mesh and
computing the Chamfer distance to the object point
cloud. Hand vertices within 2mm of their nearest ob-
ject point are considered in contact, to emulate soft tis-
sue deformation as in [16]. A high precision means
a low false positives count, while a high recall means
a low false negatives count. The F1 score is the har-
monic mean of both and is a measure of predictive per-
formance.

• Simulation Displacement (SD) (cm): The distance of
displacement of the object in world space when ap-
plying inward forces to the hand grasp in a physics
simulation. This tells how stable the grasp is, since
more hand-object contact patches result in higher fric-
tion and therefore lower displacement.

C.2. Perturbed ContactPose

We show a qualitative comparison of our method vs.
ContactOpt [16] on several objects. Fig. 7 shows failure
cases in some challenging cases. While ContactOpt [16]
fails to produce a plausible grasp for each object and noisy
input, our method delivers satisfying results that still closely
match the contacts of the ground-truth hand pose. Further
qualitative samples are shown in Fig. 8, Fig. 9, and Fig. 10,
where our method demonstrates fidelity in the reconstructed
finger contacts, as opposed to ContactOpt [16].



Method Ground truth Observation Prediction
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JointDiffusion
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Figure 7. Failure cases on a comparison of JointDiffusion and ContactOpt for the Perturbed ContactPose benchmark. While ContactOpt
consistently fails at producing a plausible mesh after multiple restarts, our method results in minimal penetration and respected finger
contacts with only one sample.
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Figure 8. Qualitative comparison of JointDiffusion vs. ContactOpt on the Perturbed ContactPose benchmark. Our method, JointDiffusion,
produces plausible grasps and maintains the fidelity of finger contacts while ContactOpt fails in challenging cases even with several random
restarts. Our method only draws one sample and performs TTO without random restarts.
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Figure 9. Qualitative comparison of JointDiffusion vs. ContactOpt on the Perturbed ContactPose benchmark. Our method, JointDiffusion,
produces plausible grasps and maintains the fidelity of finger contacts while ContactOpt fails in challenging cases even with several random
restarts. Our method only draws one sample and performs TTO without random restarts.
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Figure 10. Qualitative comparison of JointDiffusion vs. ContactOpt on the Perturbed ContactPose benchmark. Our method, JointDiffusion,
produces plausible grasps and maintains the fidelity of finger contacts while ContactOpt fails in challenging cases even with several random
restarts. Our method only draws one sample and performs TTO without random restarts.



C.3. Object splits experiment

To evaluate the generalizability of our method in the
grasp refinement setting, we retrain all methods on the Per-
turbed ContactPose benchmark [16] with object splits in-
stead of subject splits. We hold 2 objects out of the valida-
tion split, and reserve 5 objects for the test split, namely:
doorknob, eyeglasses, apple, bowl, toothbrush. This in-
creases the difficulty of the benchmark, as all test objects
were unseen during training. For a method to perform well
in this setting, it must learn generalizable hand-object inter-
action in latent space. Tab. 5 shows that our method outper-
forms ContactOpt [16] on most contact-based metrics, and
TOCH [53] on all metrics. ContactOpt [16] retains an edge
on the recall score since it maximizes the hand-object con-
tact ratio and therefore minimizes false negatives, but at the
cost of less contact fidelity since its precision score is sig-
nificantly lower than JointDiffusion. However, TOCH [53]
fails to generalize to these objects, which can be explained
by the lack of object representation in the TOCH field. We
consider this task to be a main challenge in hand-object in-
teraction understanding and will focus on object generaliza-
tion in future work.

C.4. Grasp synthesis

Fig. 11 and Fig. 12 show samples of our generative
model given an object mesh as input. The model is trained
on the improved Perturbed ContactPose benchmark [16],
i.e. all objects are seen during training. JointDiffusion gen-
erates visually plausible grasps with consistent finger con-
tacts and minimal mesh penetration. In addition, to en-
hance visibility, we provide non-cherry-picked supplemen-
tary videos of generated hand grasps.



Table 5. Quantitative evaluation of our approach on static grasp refinement against ContactOpt [16] on the Perturbed ContactPose bench-
mark with object splits. * means reported figures. JointDiffusion is evaluated with one non-cherry-picked generated grasp per sample.
JointDiffusion shows greater contact accuracy and outperforms ContactOpt [16] on most contact metrics, although ContactOpt [16] retains
a greater recall score due to its objective which maximizes the hand-object contact ratio, hence reducing false negatives. Best results are in
bold, second best are underlined.

Method MPJPE (mm) ↓ R-MPJPE (mm) ↓ IV (cm3) ↓ F1 (%) ↑ Precision (%) ↑ Recall (%) ↑
Perturbed data 83.02 21.55 6.99 1.55 1.88 2.74
ContactOpt [16] 35.05 29.13 12.83* 15.39 12.04 30.36
TOCH [53] 48.27 51.13 17.63 11.18 10.74 13.54
JointDiffusion 42.54 29.55 2.90 21.40 21.94 23.05

Input Sample 1 Sample 2 Sample 3

Figure 11. Qualitative evaluation of our method, JointDiffusion, trained on the object modality of input for grasp synthesis. Each sample is
generated from the same input, the object mesh in canonical pose. JointDiffusion produces plausible grasps with minimal mesh penetration
and consistent finger contacts.



Input Sample 1 Sample 2 Sample 3

Figure 12. Qualitative evaluation of our method, JointDiffusion, trained on the object modality of input for grasp synthesis. Each sample is
generated from the same input, the object mesh in canonical pose. JointDiffusion produces plausible grasps with minimal mesh penetration
and consistent finger contacts.



C.5. Multimodal model: grasp refinement & syn-
thesis

We further explore our model expressiveness by jointly
training two context encoders along with the diffusion back-
bone of JointDiffusion, as opposed to separately trained
models for object conditioning and noisy hand-object pair
conditioning. Fig. 13 shows qualitative results of the grasp
synthesis from this model, while Fig. 14 shows qualitative
results of the grasp denoising task for the same model. We
trained two multimodal models: one on the ContactPose [8]
dataset, and one on the OakInk [46] dataset which we only
evaluate on grasp synthesis.

A quantitative evaluation on the denoising task is shown
on Tab. 7, and one on the generation task is shown on Tab. 6.
For the latter, the increase in simulation displacement (SD)
for our method with contact fitting suggests that some hand
penetration is helpful to a stable grasp. Note that the syn-
thetic nature of most OakInk samples results in incorrect
vertex normals, adversely affecting our penetration regular-
ization loss and performance. This could be solved with a
different approach to penetration regularization, such as via
the signed distance function.

Table 6. Evaluation of our multimodal model on static grasp gen-
eration against two state-of-the-art methods on two benchmarks.
JointDiffusion outperforms GraspTTA [22] on the ContactPose
benchmark [8] and is on par with GrabNet [43] on the OakInk
benchmark [46]. We used reported metrics for GrabNet [43] from
the OakInk paper [46] and sampled one grasp per dataset sample
for our method on both benchmarks. Best results are in bold.

ContactPose [8] OakInk [46]
Method IV (cm3) ↓ SD (cm) ↓ IV (cm3) ↓ SD (cm) ↓
GraspTTA [22] 5.17 3.81 - -
GrabNet [43] - - 6.60 1.21
JointDiffusion 5.13 5.80 5.98 5.84



Table 7. Evaluation of our approach on static grasp refinement against two SOTA methods and our baseline on the Perturbed ContactPose
benchmark. * means reported figures. Our multimodal model is marked with †. Both JointDiffusion variants were evaluated with one
non-cherry-picked generated grasp per sample. While our baseline yields better reconstruction accuracy in absolute pose, our full model
JointDiffusion shows greater contact accuracy and outperforms ContactOpt [16] and TOCH [53] on almost all metrics. The multimodal
version still outperforms these baselines on contact-based metrics and IV score for grasp refinement, while also being able to do grasp
synthesis. Best results are in bold, second best are underlined.

Method MPJPE (mm) ↓ R-MPJPE (mm) ↓ IV (cm3) ↓ F1 (%) ↑ Precision (%) ↑ Recall (%) ↑
Perturbed data 83.02 21.55 6.99 1.55 1.88 2.74
ContactOpt [16] 32.88 28.17 12.83* 17.27 13.24 34.30
TOCH [53] 26.96 29.24 10.14 22.23 21.46 25.09
JointDiffusion 27.69 23.54 6.04 27.20 25.21 32.80
JointDiffusion † 35.45 33.10 5.62 24.88 23.87 29.24

Input Sample 1 Sample 2 Sample 3

Figure 13. Qualitative evaluation of our multimodal JointDiffusion, trained on both object and noisy hand-object pair modalities, in the
grasp synthesis setting. Each sample is generated from the same input, the object mesh in canonical pose. JointDiffusion produces plausible
grasps with minimal mesh penetration and consistent finger contacts.



Ground truth Observation Prediction

Figure 14. Qualitative evaluation of our multimodal JointDiffusion, trained on both object and noisy hand-object pair modalities, in the
grasp refinement setting. JointDiffusion produces plausible grasps with minimal mesh penetration and respects finger contacts from the
ground-truth mesh.
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