
Appendix

A. Notations

The notations used in this paper are listed in Tab. 7.

B. Details of Method

B.1. Algorithm

Algorithm 1 outlines the comprehensive training proce-
dure for our suggested FedWCA, while Algorithm 2 details
the local adaptation process.

B.2. Soft Neighborhood Density

We review Soft Neighborhood Density (SND) [41] used
to assess the overall model efficacy in our FedWCA (see
Eq. (3)). SND is originally proposed as a method for evalu-
ating models in an unsupervised manner by analyzing how
densely data points cluster together using the overall mod-
els’ outputs. It defines ‘soft neighborhoods’ of a data point
by the distribution of its similarity to other points, and mea-
sures density as the entropy of this distribution.

Let h = g ◦ f and D = {xi}Ni=1 be an evaluated
model and an unlabeled dataset, respectively. SND first
computes the similarity between samples. Let Qi,j =
cos(h(xi), h(xj)) be the (i, j) element of the similarity ma-
trix, where cos(·, ·) is the cosine similarity. The diagonal
elements of Q are ignored to compute the distance to neigh-
bors for each sample. Q is then converted into a probabilis-
tic distribution P using the scaling temperature parameter
T and the softmax function:

Pi,j =
exp(Qi,j/T)∑
j′ exp(Qi,j′/T)

. (5)

The temperature is set to 0.05 in the original paper and we
use it. We finally obtain the SND value of h by computing
the entropy for each row of P (i.e., each sample) and taking
the average of all samples:

S(h) = − 1

N

N∑
i=1

N∑
j=1

Pi,j logPi,j . (6)

See the original paper for detailed explanation.

B.3. Cluster Weights

We provide the final specific cluster weights vk =
(vk,1, . . . , vk,C) in the initial model f init

k =
∑

c vk,cfc. Ac-
cording to Sec. 4.2, the initial model for client k is com-

puted as follows:

f init
k (7)

= βk,0fck + βk,1

∑
c

αk,cf̃c

= βk,0fck + βk,1

∑
c

αk,c{Bc,0fc +Bc,1

∑
c′

Ac′→cfc′}

=
∑
c

{1(c = ck)βk,0 + βk,1αk,cBc,0

+ βk,1

∑
c′

Bc′,1αk,c′Ac→c′}fc,

where 1 is the indicator function. The third equation can
be obtained by replacing the subscripts c and c′. We thus
obtain the cluster weights vk as:

vk,c = 1(c = ck)βk,0 + βk,1αk,cBc,0 (8)

+ βk,1

∑
c′

Bc′,1αk,c′Ac→c′ .

B.4. Loss Function of SHOT

We review the loss function of SHOT [29], adopted as
a loss function of our method because of its simplicity.
The loss function comprises the cross-entropy loss for the
pseudo-labeled dataset and an Information Maximization
(IM) loss [13] for the unlabeled dataset. The IM loss pro-
motes confident model outputs and counteracts a bias to-
wards any single class by discouraging trivial score distribu-
tions. The total loss function L(h) for the model h weights
these two loss functions with a balancing parameter λ:

L(h) = LIM(h;D) + λLCE(h; D̂); (9)

LCE(h; D̂) = − 1

N

∑
(x,ŷ)∈D̂

log (h(x))ŷ,

LIM(h;D) =

M∑
m=1

ôm log ôm

− 1

N

M∑
m=1

∑
x∈D

(h(x))m log (h(x))m,

where N is the dataset size and LCE(h; D̂) represents
the cross-entropy loss calculated over the pseudo-labeled
dataset D̂, which encourages the model h to align with the
pseudo-labels. The IM loss LIM(h;D), on the other hand,
comprises two terms: (1) the negative entropy of the mean
output score ô =

∑
x∈D h(x)/N and (2) the entropy of the

model’s output scores for each data point in the unlabeled
dataset D.

Table 7. Notation in the paper.

Symbol/Notation Definition
Problem
X feature space
Y label space
M number of classes indexed by m
K number of clients indexd by k
R number of communication rounds indexed by r
E number of local epochs for each client
Dk = {xi}Nk

i=1 unlabeled dataset of client k with Nk samples
Pk(X) data distribution of client k
f : X → Rq feature extractor
g : Rq → RM classifier
h = g ◦ f classification model
hS = gS ◦ fS source model
W = [w1, . . . , wM] ∈ Rq×M classifier weight for gS
hk = gk ◦ fk locally trained model by client k
Method
A(k, l) adjacency matrix for client clustering
κk nearest neighbor client for client k
C number of clusters indexed by c
ck cluster index assigned to client k
fc cluster model for cluster c
f̃c soft cluster model for cluster c: f̃c = Bc,0fc +Bc,1

∑
c′ Ac′→cfc′

f̄k locally combined model by client k using soft cluster models: f̄k =
∑

c αk,cf̃c
f init
k initial model of client k for each round: f init

k = βk,0fck + βk,1

∑
c αk,cf̃c

m(i) class whose classifier weight vector is closest to fc(xi): m(i) = argmaxm cos(fc(xi), wm)
vk = (vk,1, . . . , vk,C) cluster weights for cluster models: f init

k =
∑

c vk,cfc
αk = (αk,1, . . . , αk,C) locally calculated cluster weights for soft cluster models
βk = (βk,0, βk,1) pseudo-performance weights for fck and f̄k
Ac′→c benefit metric indicating the relative advantage of cluster c for clients in cluster c′

Bc,0, Bc,1 coefficients balancing the emphasis between fc and
∑

c′ Ac′→cfc′

Ta, Tb temperature parameters controlling αk and βk, respectively
λ, µ balancing parameters for the loss function and mixup, respectively
D̂k = {xi, ŷi}Nk

i=1 pseudo-labeled dataset of client k obtained by a prototype-based pseudo-labeling and mixup

C. Detailed Experimental Settings
C.1. Datasets

Tab. 8 summarizes the details of datasets used in our ex-
periments. For Digit-Five, we used the entire dataset for
USPS and 34,000 randomly selected samples for the other
domains. For each dataset, one domain was selected as
the source, and the remaining domains served as target do-
mains. Data samples from each target domain were dis-
tributed to 8 clients for Digit-Five and 3 clients for PACS
and Office-Home per domain, all in an i.i.d. manner. Each
client’s data were divided into three subsets: 20% for test-
ing, 64% for training, and 16% for validation.

C.2. Implementation Details

For the implementation, we set the local epoch to E = 5
and total communication rounds to R = 100 for Digit-Five
and PACS, and R = 50 for Office-Home, ensuring con-

vergence of each method’s learning. In the case of Fed-
PCL+PL, we limited R to 20, due to overfitting observed in
this method on the PACS and Office-Home datasets. The
stochastic gradient descent (SGD) was used with the best
learning rate of 10−3 for Digit-Five and 10−4 for PACS
and Office-Home in all methods, which are selected from
{10−i|i ∈ {1, 2, 3, 4, 5}}. For source model training, we set
the learning rate to 0.001 in all datasets. Additionally, we
adopted a weight decay of 0.001 and a momentum of 0.9,
in line with standard SFDA studies [29]. In LADD’s imple-
mentation, we randomly selected 100 samples from each
client’s target data for computing style features, focusing
on the central 5% region of the frequency spectrum. Other
hyperparameters for LADD were also appropriately tuned.
The temperature parameters of FedPCL were set to 70 as a
result of tuning. For our methods, the temperature param-
eters were set to Tb = 0.05 for all datasets (aligned with
SND [41]) and Ta = 0.01 for Digit-Five and Office-Home,

Table 8. Dataset information including number of samples, classes, and clients for three datasets.

Datasets Number of samples Classes ClientsPer domain Total

Digit-Five MNIST: 34,000, MNIST-M: 34,000 145,298 10 32SVHN: 34,000, SYNTH: 34,000, USPS: 9298

PACS Art Painting: 2,048, Cartoon: 2,344 9,991 7 9Photo: 1,670, Sketch: 3,929

Office-Home Art: 2,424, Clipart: 4,365 15,579 65 9Product: 4,437, Real-World: 4,353

Cluster ID

C

C ′

C ′′

P

P ′

P ′′

S

S ′

S ′′

Cl
ie

nt
 ID

0.637 0.260 0.103

0.651 0.255 0.093

0.651 0.256 0.092

0.283 0.702 0.016

0.302 0.684 0.014

0.286 0.698 0.016

0.165 0.137 0.698

0.186 0.150 0.664

0.179 0.152 0.669

r = 2

Cluster ID

C

C ′

C ′′

P

P ′

P ′′

S

S ′

S ′′

0.749 0.223 0.028

0.744 0.229 0.028

0.746 0.227 0.028

0.223 0.768 0.009

0.227 0.765 0.008

0.234 0.757 0.009

0.131 0.117 0.752

0.147 0.122 0.731

0.141 0.122 0.736

r = 50

0.0

0.2

0.4

0.6

0.8

1.0

(a) FedWCA-L

Cluster ID

C

C ′

C ′′

P

P ′

P ′′

S

S ′

S ′′

Cl
ie

nt
 ID

0.510 0.211 0.336

0.451 0.245 0.372

0.411 0.257 0.402

0.168 0.722 0.194

0.123 0.796 0.139

0.109 0.821 0.124

0.270 0.210 0.568

0.279 0.223 0.550

0.279 0.221 0.552

r = 2

Cluster ID

C

C ′

C ′′

P

P ′

P ′′

S

S ′

S ′′

0.852 0.079 0.088

0.911 0.049 0.051

0.890 0.061 0.062

0.110 0.833 0.073

0.136 0.798 0.085

0.105 0.844 0.065

0.162 0.091 0.756

0.213 0.117 0.683

0.174 0.096 0.740

r = 50

0.0

0.2

0.4

0.6

0.8

1.0

(b) FedWCA

Figure 5. Visualization of cluster weights for FedWCA-L and FedWCA when the communication round r is 2 and 50. Art Painting
in PACS dataset is used for the source dataset. Clients C,C′, C′′ belong to Cartoon, P, P ′, P ′′ to Photo, and S, S′, S′′ to Sketch. See
the first row of Tab. 4 for the cluster IDs (denoted by ⃝, △, and □) assigned to each client. The number represents the weight for the
corresponding cluster.

Table 9. Hyperparameters for our FedWCA including the learn-
ing rate (lr), balancing parameter for cross-entropy loss λ, balanc-
ing parameter for mixup µ, and temperature parameters Ta, Tb.
Only for SYNTH of Digit-Five and Clipart of Office-Home source
domains, Ta is set to 0.001 and 0.1, respectively.

Datasets Hyperparameters
lr λ µ Ta Tb

Digit-Five 0.001 0.1 0.55 0.01 0.05
PACS 0.0001 0.3 0.55 0.1 0.05

Office-Home 0.0001 0.3 0.55 0.01 0.05

except for SYNTH (Ta = 0.001) and Clipart (Ta = 0.1)
source domains, while Ta = 0.1 for PACS. The balancing
parameter λ was assigned the same value as in the origi-
nal SHOT paper [29]. In particular, Tab. 9 summarizes the
hyperparameters for FedWCA.

C.3. Hyperparameter Tuning

For LADD, we searched the regularization pa-
rameters and starting rounds from {10−i|i ∈
{−2,−1, 0, 1, 2, 3, 4, 5}} and {5, 10, 30, 50, 80, 100},
respectively. For FedPCL, the best temperature parameter
was selected from {7 × 10−i|i ∈ {−2,−1, 0, 1, 2, 3}}
as par the original paper. For our FedWCA, we
searched the temperature parameters Ta and Tb from
{0.001, 0.005, 0.01, 0.05, 0.1}.

D. Limitations and Discussions

Complexity of FedWCA. We mention that the deriva-
tion of cluster weights in our method, while not computa-
tionally intensive, involves a complex procedure. Although
Sec. 5.2 demonstrates that simpler weight calculations do
not provide sufficient performance, identifying simpler yet
effective methods for calculating cluster weights that match

Table 10. Results for FedWCA modification reducing costs.
The numbers are the mean values ± standard deviations of the
averaged accuracy (%) across all clients and all target domains.
In the latter U − 1 rounds of every U round, the initial model of
the FedWCA can be computed server-side as opposed to client-
side, thereby cutting communication, storage, and computational
costs. This revised FedWCA boasts an equivalent performance to
its original counterpart when U = 5.

Datasets
Methods

Revised FedWCA FedWCA
U = 5

Digit-Five

MN 73.37 ± 3.65 72.74 ± 3.57
SV 89.88 ± 2.24 90.13 ± 2.08

MN-M 83.16 ± 0.56 82.93 ± 0.79
US 57.33 ± 3.00 58.56 ± 4.26
SY 85.70 ± 1.05 84.06 ± 1.38

Avg. 77.89 ± 11.93 77.69 ± 11.47

PACS

Ar 80.89 ± 2.54 80.63 ± 2.44
Ca 83.23 ± 0.91 83.18 ± 0.86
Ph 65.32 ± 1.06 65.50 ± 1.24
Sk 84.28 ± 6.40 84.22 ± 6.60

Avg. 78.43 ± 8.45 78.38 ± 8.38

Office-Home

Ar 66.13 ± 0.67 66.06 ± 0.50
Cl 68.33 ± 0.61 68.32 ± 0.42
Pr 61.30 ± 0.60 61.46 ± 0.88
Re 67.63 ± 0.29 68.06 ± 0.46

Avg. 65.85 ± 2.86 65.97 ± 2.83

FedWCA’s performance remains a task for future research.
However, our method can be slightly modified to reduce
computational costs, as discussed below.

Concerns about distributing all cluster models. Our
method requires each client to receive all soft cluster mod-
els, which may raise some concerns: (1) privacy concerns
and (2) additional communication and storage costs.

(1) Distributing cluster models poses minimal privacy
risks due to several factors. Initially, we note that the server
distributes all ”soft cluster models” to each client, along
with the original cluster model of the respective client. Soft
cluster models, produced by merging all cluster models,
roughly incorporate all clients’ local models and thus, pri-
vacy risks remain similar to typical FL methods such as Fe-
dAvg. Further, distributing the single original cluster model
to clients is a standard practice in current clustered FL stud-
ies and carries minimal privacy risk. This is due to our algo-
rithm’s design, where clients are only privy to their specific
cluster IDs with no insight into other cluster details such as
cluster size or client membership, even if it is composed of
only two clients.

(2) Our weighted cluster aggregation (WCA) costs C+1
times higher than FedAvg (C: number of clusters) due to the
requirement of each client receiving and storing C soft clus-
ter models and the original cluster model. However, we can
save those costs by altering the computation of the client’s
initial models in WCA as follows. In the first round of every
U rounds, clients compute their initial models as the origi-

nal method does. In the following U − 1 rounds, the initial
models are computed server-side, utilizing identical cluster
weights sent by clients in the first round. This modifica-
tion allows the server to only distribute two models to each
client: the computed initial model and the original cluster
model, reducing the communication and storage costs by a
factor of 2/(C + 1) in (U − 1)/U of all rounds. This can
also lessen the client’s computational cost for initial model
calculations. As demonstrated in Tab. 10, further tests on
Digit-Five, PACS, and Office-Home with U = 5 showed
that the revised FedWCA maintains similar average accu-
racy as the original. Notably, in some source domains like
SYNTH, the revised technique improves accuracy. This en-
hancement is because the use of identical cluster weights
reduces overfitting.

Different enhancement according to dataset. As illus-
trated in Sec. 5.1, the accuracy enhancement achieved by
our method varies with the dataset. Specifically, for datasets
exhibiting minor domain gaps, FedAvg may suffice to some
extent, as the impact of domain shifts on accuracy is min-
imal. For instance, in the Office-Home dataset, although
our method surpasses FedAvg, the superiority margin is less
significant than in Digit-Five and PACS.

Extension to other tasks. While our approach is pri-
marily tailored for classification tasks, its underlying prin-
ciples could theoretically extend to other complex vision
tasks, like object detection. However, direct extrapolation
may encounter challenges, such as convergence of feature
vectors towards classifier vectors in cluster weight calcula-
tions. Adapting and assessing our method in these diverse
contexts constitutes an avenue for future research.

E. Supplementary Experimental Results

E.1. Visualization of Cluster Weights

Fig. 5 visualizes the cluster weights for our proposed
methods FedWCA and FedWCA-L, a variant of FedWCA
wherein cluster weights are computed solely locally (see
Sec. 4.2). This shows that clients within the same domain
obtain similar weights, indicating the efficacy of our cluster
weight calculation based on Eq. (1). FedWCA, in particu-
lar, promotes inter-domain collaboration early in learning
(r = 2), notably between Cartoon and Sketch domains.
Specifically, Cartoon domain clients (C,C ′, C ′′) have sig-
nificantly higher weights for cluster □ (Sketch) in FedWCA
compared to FedWCA-L. This is the result of the Cartoon
domain clients considering the benefits for the clients in
cluster □. As learning progresses (r = 50), FedWCA
clients increasingly concentrate on their respective clusters,
highlighting the method’s balance between overall and in-
dividual advantages. As a result, this approach leads to no-
table accuracy improvements for both Cartoon and Sketch
clients, as depicted in Fig. 4 (b).

Table 11. Full results for layer dependence of clustering. Art
Painting of PACS is used as the source domain, and ResNet-18
is employed. Clients C,C′, C′′ belong to Cartoon, P, P ′, P ′′ to
Photo, and S, S′, S′′ to Sketch. The table below reports the clus-
ter IDs (denoted by ⃝, △, and □) assigned to each client. Ide-
ally, each client group (C,C′, C′′), (P, P ′, P ′′), and (S, S′, S′′)
should be grouped together, as is achieved by the first and second
layers.

Clients
Layer C C′ C′′ P P ′ P ′′ S S′ S′′

1st ⃝ ⃝ ⃝ △ △ △ □ □ □
2nd ⃝ ⃝ ⃝ △ △ △ □ □ □
3rd ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
4th ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ △ △ △
5th ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
6th ⃝ ⃝ ⃝ △ △ △ □ □ □
7th ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
8th ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
9th ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

10th ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ △ △ △
11th ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
12th ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ △ △
13th ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
14th ⃝ ⃝ ⃝ △ △ △ □ □ □
15th ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
16th ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ △ △ △
17th ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

All ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

E.2. Results of Client Clustering

Tab. 11 shows the full results for the layer dependence of
client clustering in our method with the PACS dataset.

Additionally, Tab. 12 presents the clustering results for
Digit-Five across various source domains using our FINCH
method. Fig. 6 shows the specific images possessed by
clients in each cluster particularly when using USPS as the
source domain. The results from Tab. 12 indicate that, un-
like PACS and Office-Home, the clustering for Digit-Five
contains some errors, except for the SVHN source domain.
To this end, we compare our standard FINCH algorithm,
against two alternatives on Digit-Five: (1) LADD cluster-
ing based on the shared style features and (2) a hypotheti-
cal ‘true’ clustering based on actual domain information. It
must be emphasized that LADD requires a specified num-
ber of iterations and a search range for clusters, whereas
FINCH necessitates no hyperparameters. Tab. 13 shows the
accuracy of FedWCA when applying each clustering algo-
rithm. Notably, FINCH performs comparably to both the
true clustering and LADD, with no need for sharing prior
information on the clusters or any information other than the
model parameters. This highlights our method’s strength in
enhancing client performance, even when assigned to in-
correct clusters, by effectively combining all cluster models
using individualized cluster weights.

Table 12. Results of client clustering in Digit-Five for each
source domain. The clustering algorithm FINCH is applied
to Lenet. Each row represents client IDs. Clients 1 to 8,
9 to 16, 17 to 24 and 25 to 32 each belong to the same
domain. The table below reports the cluster IDs (denoted
by, e.g., ⃝, △, □, and ♢) assigned to each client. Ide-
ally, each client group (1,2,3,4,5,6,7,8), (9,10,11,12,13,14,15,16),
(17,18,19,20,21,22,23,24), and (25,26,27,28,29,30,31,32) should
be grouped together, as is achieved by SVHN source domain.

Client ID Source domains
MN SV MN-M US SY

1 ⃝ ⃝ ⃝ ⃝ ⃝
2 ⃝ ⃝ ⃝ ⃝ ⃝
3 ⃝ ⃝ ⃝ ⃝ ⃝
4 ⃝ ⃝ ⃝ ⃝ ⃝
5 ⃝ ⃝ ⃝ ⃝ ⃝
6 ⃝ ⃝ ⃝ ⃝ ⃝
7 △ ⃝ ⃝ ⃝ ⃝
8 △ ⃝ ⃝ ⃝ ⃝
9 □ △ △ △ △

10 □ △ △ △ △
11 □ △ △ △ △
12 □ △ △ △ △
13 ♢ △ △ △ △
14 ♢ △ △ △ △
15 ♡ △ △ △ △
16 ♡ △ △ △ △
17 ⋆ □ □ □ □
18 ⋆ □ □ □ □
19 ⋆ □ □ □ □
20 ⋆ □ □ □ □
21 ⋆ □ □ □ ♢
22 ⋆ □ ♢ ♢ ♢
23 ♣ □ ♢ ♢ ♢
24 ♣ □ ♢ ♢ ♢
25 ♠ ♢ ♡ ♡ △
26 ♠ ♢ ♡ ♡ △
27 ♠ ♢ ♡ ♡ △
28 ♠ ♢ ♡ ♡ △
29 ♠ ♢ ♡ ♡ △
30 ♠ ♢ ♡ ♡ △
31 ♠ ♢ ♡ ♡ △
32 ♠ ♢ ♡ ♡ △

Table 13. Ablation on clustering algorithm. Three clustering al-
gorithms are applied to FedWCA. ‘True’ uses the hypothetical true
clusters based on the domain labels. Even without specific cluster
information, FedWCA offers similar performance to ‘True’.

Clustering Digit-Five
MN SV MN-M US SY Avg.

FINCH 72.74 90.13 83.93 58.56 84.94 77.86
LADD 72.33 89.89 81.99 58.72 85.58 77.70

True 72.93 90.07 83.43 56.95 85.69 77.81

Cluster〇

Client 1 Client 2

Client 3 Client 4

Cluster△

Client 9 Client 10

Client 11 Client 12

Cluster

Client 17 Client 18

Client 19 Client 20

Cluster

Client 22 Client 23

Client 24

Cluster

Client 25 Client 26

Client 27 Client 28

Figure 6. Images possessed by clients in each cluster. USPS of Digit-Five serves as the source domain. Our FedWCA clusters clients
according to their local models, almost matching their data domains.

Table 14. Performance comparison with extended FL methods (Digit-Five and PACS). The existing FL methods, FedProx [27],
FedAMP [17], and IFCA [12] are extended to FFREEDA by incorporating PP: prototype-based pseudo-labeling, FP: fixed pseudo-labels
in each round, and IM: IM loss. FedWCA outperforms them in all source domains.

Datasets
Methods (+PP+FP+IM)

FedProx FedAMP IFCA FedWCA (ours)

Digit-Five

MN 56.01 ± 2.46 51.48 ± 0.44 58.68 ± 2.21 72.74 ± 3.57
SV 83.27 ± 1.80 83.00 ± 0.81 83.39 ± 1.60 90.13 ± 2.08

MN-M 81.27 ± 0.29 72.94 ± 2.09 79.82 ± 0.40 82.93 ± 0.79
US 52.78 ± 0.74 53.81 ± 1.54 55.62 ± 2.99 58.56 ± 4.26
SY 82.21 ± 0.54 82.22 ± 0.32 81.71 ± 0.75 84.94 ± 1.15

Avg. 71.11 ± 13.86 68.69 ± 13.73 71.81 ± 12.30 77.86 ± 11.56

PACS

Ar 76.50 ± 1.24 73.54 ± 1.30 75.82 ± 3.11 80.63 ± 2.44
Ca 76.16 ± 0.87 77.55 ± 1.21 79.13 ± 2.57 83.18 ± 0.86
Ph 60.88 ± 0.74 63.70 ± 0.79 64.61 ± 1.57 65.50 ± 1.24
Sk 80.29 ± 7.02 75.84 ± 5.87 80.93 ± 6.59 84.22 ± 6.60

Avg. 73.46 ± 8.29 72.66 ± 6.19 75.13 ± 7.46 78.38 ± 8.38

E.3. Comparison with Other Federated Learning
Methods

In addition to FedAvg and FedPCL, we extended
other FL methods using ground-truth labels to FFREEDA
by incorporating a prototype-based pseudo-labeling, fixed
pseudo-labels per round, and IM loss, and compared them
to our method. We adopted three additional FL methods:
(1) FedProx [27], (2) FedAMP [17], and (3) IFCA [12].
FedProx modifies FedAvg by adding the proximal term to
address data heterogeneity. FedAMP personalizes FL by
creating a client-specific cloud model weighted on the sim-
ilarity of each client’s model parameters, with clients sub-
sequently training personalized models based on this cloud
model. IFCA, a clustered FL method that requires setting
the number of clusters, has each client calculate the loss for
all cluster models and train the model with the lowest loss
per round.

The performance comparison is shown in Tab. 14. Our
FedWCA outperforms all other methods n all source do-
mains for Digit-Five and PACS, highlighting that merely
extending existing FL methods to FFREEDA is insufficient
and confirming our method’s effectiveness. FedProx uses
basic averaging for aggregation, FedAMP’s parameter sim-

ilarity weighting is unsuitable for our unlabeled adaptation,
and IFCA’s cluster model selection is unstable due to the
loss calculation based on pseudo-labels.

Algorithm 1: FedWCA (Federated learning with weighted cluster aggregation)

Input: K clients, k-th client’s local unlabeled data Dk = {xi}Nk
i=1, k-th client’s initial local model

hinit
k = ginitk ◦ f init

k , source model hS = gS ◦ fS , local epochs E, total communication round R, temperature
parameters Ta, Tb, balancing parameters λ, µ

Output: K personalized models hk = gS ◦ fck
1 for r = 0, . . . R− 1 do
2 if r = 0 then
3 Client:
4 Initialize the local model: hinit

k = ginitk ◦ f init
k ← hS = gS ◦ fS

5 fk = ClientLocalAdaptation(r, Dk, f init
k , ginitk , E, λ)

6 Send fk to the server
7 Server:
8 Cluster K clients into C clusters based on the first layers’ parameters of fk by using FINCH: k 7→ ck
9 Create cluster models fc by averaging the local models fk in each cluster c ∈ {1, . . . , C}

10 Initialize soft cluster models f̃c = fc
11 else
12 Client:
13 Calculate αk for f̃c and βk for fck and f̄c =

∑
c αk,cf̃c by Eq. (1) and Eq. (3)

14 Set an initial model: f init
k = βk,0fck + βk,1

∑
c αk,cf̃c

15 fk = ClientLocalAdaptation(r, Dk, f init
k , fck , ginitk , E, Ta, Tb, λ, µ)

16 Send fk, αk, and βk to the server
17 Server:
18 Update cluster models fc by averaging the local models fk in each cluster c ∈ {1, . . . , C}
19 Calculate Ac→c′ and Bc,i by averaging αk,c′ and βk,i across clients within each cluster c
20 Update soft cluster models: f̃c = Bc,0fc +Bc,1

∑
c′∈C Ac′→cfc′

21 Server: Send fck and f̃c for every c to the client k

Algorithm 2: ClientLocalAdaptation

Input: Current round r, unlabeled data D = {xi}Ni=1, initial model f init, cluster model fc, classifier g, local epochs
E, temperature parameters Ta, Tb, balancing parameters λ, µ.

Output: Trained model f
1 if r = 0 then
2 Compute class-wise prototypes pm for each class m by g ◦ f init and assign each sample x ∈ D pseudo-labels ŷ

via Eq. (4), and generate a pseudo-labeled dataset D̂ = {xi, ŷi}Ni=1

3 else
4 Compute class-wise prototypes pm and qm for each class m by g ◦ f init and g ◦ fc, and assign each sample

x ∈ D pseudo-label ŷinit and ŷc via Eq. (4), respectively
5 Compute normalization factors p, q:

p =
∑

m̸=m′

cos(pm, pm′)

M(M − 1)
, q =

∑
m ̸=m′

cos(qm, qm′)

M(M − 1)

6 Assign each sample x ∈ D pseudo-label ŷ = ŷinit if pm/p ≥ qm/q, and ŷ = ŷc otherwise
7 Generate pseudo-labeled datasets D̂mat and D̂mis:

D̂mat = {(x, ŷ)|x ∈ D s.t. ŷinit = ŷc)}, D̂mis = {(x, ŷ)|x ∈ D s.t. ŷinit ̸= ŷc)}

8 Generate a mixed dataset D̂mix and a pseudo-labeled dataset D̂ = D̂mat ∪ D̂mix:

D̂mix = {((1− µ)x+ µx′, ŷ)|(x, ŷ) ∈ D̂mis, randomly sampled (x′, ŷ) ∈ D̂mat for each (x, ŷ)}

9 Initialize a model: f = f init

10 for e = 0, . . . , E − 1 do
11 Update f with SGD by minimizing the loss function L(g ◦ f) = LIM(g ◦ f ;D) + λLCE(g ◦ f ; D̂) defined in

Eq. (9) while fixing g

12 return f

