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In the main text, we presented YODA as an approach to
dynamically focus the diffusion process to essential areas
in the image. The supplementary material hereby gives
further information and visualizations on YODA, such as a
discussion on related work, details on DINO, training details,
and complexity analysis. It supports understanding the main
concepts and ideas examined in the main text.
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1. Related Work
In this section, we discuss other diffusion models that can

be applied to YODA and content-aware SR methods that
also focus on image content to optimize certain properties in
the SR pipeline.

1.1. Other State-Of-The-Art Diffusion Models

As shown in the study of Moser et al. [19], many approaches
apply to image SR. In this section, we want to discuss their
potential in combination with YODA and possible limita-
tions for future work.

Latent Diffusion Models. Despite the significant ad-
vancements brought by Latent Diffusion Models (LDMs)
[22], their efficacy in the realm of image SR competes closely

Table 1. ×4 upscaling results on ImageNet-Val. (256 × 256).
Values directly derived from the original work of LDM [22].

Method IS ↑ PSNR ↑ SSIM ↑
Image Regression [23] 121.1 27.9 0.801
SR3 [23] 180.1 26.4 0.762

LDM-4 (100 steps) [22] 166.3 24.4±3.8 0.69±0.14

LDM-4 (big, 100 steps) [22] 174.9 24.7±4.1 0.71±0.15

LDM-4 (50 steps, guiding) [22] 153.7 25.8±3.7 0.74±0.12

with that of SR3 [23], as shown in Table 1. Unfortunately,
recent research in this direction focused primarily on text-
to-image tasks [10], which makes further comparisons with
image SR methods challenging, e.g., SDXL [20], MultiDif-
fusion [3], or DemoFusion [9]. Nevertheless, their potential
for image SR is undeniable. Concerning YODA, we also
see great research avenues in combination with LDMs. A
critical prerequisite for this synergy is the conversion of at-
tention maps from pixel to latent representations. This aspect
has to be investigated in more detail in future work. Our
preliminary StableSR (10 epochs in stage 2) results show
that our method improves LPIPS from 0.1242 to 0.1239.

Unsupervised Diffusion Models. Another interesting
research avenue is unsupervised diffusion models for image
SR, exemplified by DDRM [13] or DDNM [26]. Interest-
ingly, they use a pre-trained diffusion model to solve any lin-
ear inverse problem, including image SR, but they rely on sin-
gular value decomposition (SVD). Similar to the challenges
faced with LDMs, integrating YODA into unsupervised dif-
fusion models presents another interesting research avenue.
The core of this challenge lies in devising a method for ef-
fectively translating attention maps into a format compatible
with the SVD process used by these models. This transfor-
mation is crucial for harnessing the power of attention-based
enhancements in unsupervised diffusion frameworks for im-
age SR. Future work needs to conceptualize and implement
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a seamless integration strategy that combines the dynamic
attention modulation offered by YODA with SVD.

Alternative Corruption Spaces. Applying YODA with
alternative corruption spaces (not pure Gaussian noise), such
as used in InDI [7], I2SB [15], CCDF [6], or ColdDiffu-
sion [2] is also an interesting future research direction. Al-
though our primary focus has been refining and enhancing
the diffusion process of specific models through attention-
guided masks, we acknowledge the orthogonal potential
these approaches represent within the broader context of SR.

1.2. Other Content-Aware SR Methods

One category of approaches that draw similarities to
YODA is dataset pruning for image SR. Commonly, image
SR methods are trained on sub-images cropped from higher-
resolution counterparts, such as those found in DIV2K [1].
The central premise behind dataset pruning strategies is the
observation that not all sub-images contribute equally to
training efficacy. These approaches employ content-aware
detectors to prune training data based on metrics like loss
values selectively [18] or Sobel norms [8].

A related strategy, ClassSR [24], categorizes different
image regions into three levels of reconstruction difficulty
- easy, medium, and hard. They propose training special-
ized models for each category. Related to ClassSR are
RAISR [21], SFTGAN [25], RL-Restore [28], and PathRe-
store [29]. RAISR [21] assigns image patches into clusters
and employs a tailored filter to each cluster, utilizing an effi-
cient hashing technique to streamline the clustering process.
SFTGAN [25] introduces a spatial feature transform layer
that embeds high-level semantic priors, enabling nuanced
processing of different image regions with different parame-
ters (i.e., different models). Similarly, RL-Restore [28] and
PathRestore [29] divide images into sub-images and employ
reinforcement learning to determine the optimal processing
pathway for each sub-image. Unlike YODA, which focuses
on refining specific image regions with one model, the pre-
sented works aim to optimize training datasets by reduction
or categorization (thereby employing multiple models tai-
lored to varied reconstruction difficulties).

Similarly, the Multiple-in-One Image Restoration (MiO
IR) strategy introduces a novel approach to handling diverse
image restoration tasks within a single model [14]. MiO
IR employs sequential learning, which allows the model to
learn different tasks incrementally and optimize for diverse
objectives. Additionally, it utilizes prompt learning - both
explicit and adaptive - to guide the model in adapting to
various tasks dynamically. While YODA focuses on refining
specific image regions, MiO IR’s versatility across tasks
offers a potential avenue for expanding YODA’s application
to more generalized scenarios.

SkipDiff [17] presents another content-aware SR ap-
proach in the context of diffusion models. This method

operates through two primary phases: a coarse skip approx-
imation and a fine skip refinement. SkipDiff constructs a
preliminary high-resolution image approximation in the first
phase in a single step. In the second phase, this image is
refined using the classical diffusion pipeline with an adap-
tive noise schedule. For this, they employ a schedule driven
by the characteristics of the input image. Reinforcement
learning is integral to this process, as it is trained to find opti-
mal diffusion steps for this phase. This adaptability enables
SkipDiff to tailor diffusion to the entire content of an image,
contrasting with YODA’s targeted refinement of specific re-
gions. Future research might explore the potential synergies
between YODA and SkipDiff, combining their strengths to
further enhance content-specific image SR.

Another recent approach in lightweight SR is the Self-
Feature Learning (SFL) method proposed by Xiao et al. [27].
This method introduces a locally adaptive involution tech-
nique that reduces computational costs by dynamically gen-
erating convolutional kernels based on local image content.
The SFL model achieves a remarkable trade-off between per-
formance and model complexity by avoiding inter-channel
redundancy, making it particularly suitable for resource-
constrained devices. Unlike YODA, which focuses on tar-
geted region refinement, SFL employs a dual-path residual
module to ensure efficient feature extraction across the entire
image, potentially complementing YODA’s targeted strategy.

2. Details: DINO

DINO [5] is a self-supervised learning approach. involv-
ing a teacher and student network. While both networks
share the same architecture, their parameters differ. The
student network is optimized to match the teacher’s output
via cross-entropy loss. During training, both receive two
random views of the same input image: the teacher is trained
on global views, i.e., 224× 224 crops, while the student re-
ceives local views, i.e., 96×96 crops. This setup encourages
the student to learn “local-to-global” correspondences. In
other words, by predicting the teacher’s output, the student
learns to infer global information from local views. To pre-
vent mode collapse, the teacher’s parameters are updated as
a moving average of the student’s parameters.

3. Details: Training Parameters

For SR3, we adopted the AdamW [16] optimizer, using
a weight decay of 0.0001 and a learning rate of 5e-5. The
number of sampling steps is set to Ttrain = 500. The num-
ber of sampling steps is set to Teval = 200. Concerning the
denoising architecture, our approach aligns with the SR3
model [23], but we employed residual blocks [11] proposed
by Ho et al. instead of those used in BigGAN [4,12]. Specif-
ically, the configuration includes three ResBlocks, an initial
channel size of 64, and a channel multiplier array of [1, 2,



4, 8, 8]. We also employed a NormGroup with a size of 32.
For SRDiff, we extracted 40× 40 sub-images with a batch
size of 16, AdamW [16], a channel size of 64 with channel
multipliers [1, 2, 2, 4] and T = 100.

4. Details: Complexity of YODA

We discuss the resource implications of the core compo-
nents of YODA: Identifying key regions, time-dependent
masking, and the guided diffusion process. Additionally, we
explore potential avenues for future enhancements aimed at
optimizing computational efficiency.

Identifying Key Regions. To avoid the computational
burden of on-the-fly generation, we pre-compute the atten-
tion maps prior to training. Table 2 shows the parameter
count and throughput of different DINO backbones. While
YODA introduces additional complexity for setting up the
attention maps, the overhead is minimal. For instance, gen-
erating all attention maps for our face SR experiments (i.e.,
120,000 images) needed less than two minutes.

Time-Dependent Masking and Guided Diffusion Pro-
cess. The integration of attention masks within the diffu-
sion framework introduces minimal computational overhead,
thanks to the inherently parallelizable nature of element-
wise multiplication and addition, as demonstrated in the
methodology (see time-dependent masking). Consequently,
the predominant factor influencing the overall computational
complexity remains the choice of diffusion model, whether
it be SR3, SRDiff, or another variant.

Potential Future Improvements. YODA notably de-
creases computational requirements by enabling the use of
smaller batch sizes during training, which in turn reduces
VRAM usage without compromising performance. Looking
ahead, YODA paves the way for leveraging sparse diffusion
techniques. Such approaches promise further computational
savings by focusing computation efforts on selectively iden-
tified regions (through YODA), thereby streamlining the
diffusion process. Currently, in PyTorch, applying masks
to regions within a matrix does not result in computational
savings.

Table 2. Details of different DINO backbones, values directly
extracted from the original work [5]. Throughput was measured
with a NVIDIA V100 GPU.

Model Parameters Throughput
[M] [img/s]

ResNet-50 23M 1237
ViT-S/8 21M 180

This examination of YODA’s complexity highlights its
efficiency and the strategic decisions made to balance per-
formance with computational demands.

5. Details: Analysis Across Attention Regions
This section explains how we created the figure associ-

ated with the subsection Analysis across attention regions.
The used attention maps are derived from DINO+ResNet.
We apply the max aggregation explained in the main pa-
per to create a single attention map per image. The aggre-
gated map is then divided into several attention-value ranges
(bins/intervals). Specifically, the attention values range from
0 to 1 (see methodology), and we divide this range into small
bins with a step size of 0.01. For each bin, we analyze the
regions of the image where the attention values fall within
the bin range (e.g., 0.01-0.02, 0.02-0.03, etc.). This allows
us to observe how different attention levels correlate with
the LPIPS scores and how each SR model performs in these
non-overlapping and separated regions.

For each attention value bin, we calculate the LPIPS score
between the reference HR image and the output images
generated by the different SR techniques (SR3, SR+YODA,
and LR/bicubic upsampling). This is done as follows:

• Mask Creation: For each attention bin, we create a
binary mask where pixels in the attention map that fall
within the bin are set to 1, and all others are set to 0.

• Region Extraction: Using this binary mask, we extract
the corresponding regions from the HR and SR images.

• LPIPS Calculation: We compute the LPIPS score
between the HR image’s masked regions and the gener-
ated images’ masked regions. This process is repeated
for each bin across the entire attention range. Masked-
out regions do not influence LPIPS because LPIPS is a
distance measure of features and masked-out regions in
HR, and any SR image leads to an LPIPS of 0.

We calculate the mean LPIPS error within attention bins
across the images. A polynomial curve (degree 3) is fitted
to the LPIPS scores for each model across the attention
value ranges to visualize trends more clearly. This allows
us to smooth out potential noise and outliers in the data and
observe how each model’s performance changes as we move
from high to low-attention regions. Key observations:

• Higher LPIPS in High Attention Regions: Bicubic
upsampling performs poorly in high-attention regions,
as indicated by the high LPIPS values. This shows
that detail-rich and perceptually important regions are
indeed reflected by attention values, as simple upsam-
pling cannot adequately capture the fine details.

• YODA’s Improvement: YODA shows the most signifi-
cant improvement in high-attention regions, confirming
that YODA refines detail-rich regions more effectively.
Moreover, it also shows that YODA is improving every
region, thereby truly super-resolving every pixel instead
of just replacing the LR and leaving it unchanged.

As DINO+ResNet starts to refine the whole image without
dynamic masking at around 0.6, the figure stops there (as it
investigated all separated regions by then).



6. More Visualizations

In the remaining part of the supplementary material, we
provide additional visualizations, such as more on attention
maps derived from different DINO heads (Figure 1), user
study (Figure 4), an overview of the working pipeline of
YODA (Figure 3), error maps (Figure 5), comparisons on
16 → 128 (Figure 2 and Figure 6), zoomed-in comparisons
(Figure 7), intermediate results (Figure 8) as well as interme-
diate binary masking (Figure 9).
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Figure 1. Comparison of attention maps derived from different DINO heads.
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Figure 2. SR3 and SR3+YODA reconstructions, 16 → 128 (8x). The color shift in SR3 can still be observed (e.g., see background). YODA
produces higher-quality images without color shift issues.
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Figure 3. An Overview of integrating YODA and DINO within SR diffusion models. Our process begins with using DINO to extract
multiple attention maps. These maps are then combined to form a singular comprehensive attention map, denoted as A. Subsequently,
leveraging A, YODA defines a unique diffusion schedule through time-dependent masks M(t) for every spatial location, as detailed within
our method section.
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Figure 4. Results of our user study. We randomly selected 50 images from the CelebA-HQ dataset and let 45 participants decide which SR
predictions are preferred with respect to the given LR image. The scaling of the tested SR prediction task was 16× 16 → 128× 128 (8x
scaling). As a result, YODA+SR3 was preferred in 55.7% of all cases.



Figure 5. Error Maps of SR3 with and without YODA. The brighter, the higher the error. The attention maps generated by DINO are shown
above. YODA produces smaller errors, especially in important areas such as face details and hair.
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Figure 6. A comparison of LR, HR, SR3, and SR3+YODA images for 16 → 128.
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Figure 7. Zoomed-in comparison of LR, HR, SRDiff, and SRDiff+YODA on DIV2K.



Figure 8. Intermediate results of the YODA’s guided diffusion process on CelebA-HQ (Time steps 189, 168, 147, 126, 105, 84, 63, 42, 21, 0
from left to right).



Figure 9. Intermediate binary masks of YODA’s guided diffusion process on CelebA-HQ.
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