
A. Related Works

A.1. CNN-Based

For a long range of time, CNN-based architectures have
dominated the computer vision domain. The prototype of
CNN is presented in [31] and after the exciting success of
AlexNet [30], a large number of methods adopt CNN archi-
tecture for higher performance [20, 52, 55]. Especially the
ResNet [20], utilizes a residual connection among layers to
alleviate the gradient vanishing. Owing to the hierarchical
structure employed in CNNs, rich information can be effec-
tively extracted from localized receptive fields. Yet, despite
advantages, CNNs exhibit certain limitations, particularly
in terms of capturing global contextual information, and in-
ductive bias both could potentially impede CNNs being ap-
plied to downstream tasks.

A.2. Transformer-Based

The foundation work [66] on Transformer-based archi-
tecture proposes the attention mechanism used to extract the
relationship among the spatial positional features. Follow-
ing the groundbreaking achievements of BERT [12] in nat-
ural language processing, numerous approaches have lever-
aged Transformer-based architecture for advanced perfor-
mance [2, 3, 14, 40, 42, 45, 48, 49, 54, 63, 64, 74], both in
natural language processing and computer vision. Notably
with self-attention mechanism, Vision Transformer [14]
has facilitated long-range dependencies, indicating that
Transformers-based architectures have the ability to extract
global context understanding.

Despite remarkable achievements across various do-
mains, Transformers do have certain drawbacks that need
to be considered. SoftMax(Q×KT

√
k

)V , is the primary reason
for heavy computational demands. Furthermore, the scal-
ability is not only impeded by its quadratic computational
complexity, but also by the necessity for extensive datasets
and significant memory consumption.

B. Compare SpiralMLP to CNNs and MHSA

In order to establish a comparison between Multi-Head
Self-Attention (abbreviated as MHSA) and SpiralMLP,
it is necessary to demonstrate the relationship between
MHSA and Convolutional Neural Networks (abbreviated
as CNNs). This is because SpiralMLP, unlike MHSA, does
not incorporate self-attention layers and is more closely
aligned with CNNs.

By examining the connection between MHSA and
CNNs, we can provide a comprehensive understanding
of the architectural differences and similarities between
MHSA and SpiralMLP. This will enable us to highlight the
unique features and advantages of each approach.

Thus we outline the following subsections in this way:

• We first elaborate how SpiralMLP is related to CNNs.

• Then we draw a relation between MHSA and CNNs
using the proof of Cordonnier [9].

• Finally we provide the comparison between MHSA
and SpiralMLP.

B.1. How is SpiralMLP related to CNNs?

In order to demonstrate the functionality of CNNs, we
define the standard convolution weight matrix as W cnn ∈
RKH×KW×Cin×Cout , where KH , KW , Cin, Cout are the ker-
nel height, kernel width, input channel dimension, output
channel dimension, respectively. Given a position (i, j, :)
within the feature map X ∈ RH×W×Cin , where H , W are
the height and weight, and Ω = {(x, y); 0 ≤ x ≤ KW , 0 ≤
y ≤ KH} is defined as a set of coordinates in a rectangular,
corresponding to the kernel. Thus the convolution operation
is formulated as:

Convi,j,:(X) =
∑

(x,y)∈Ω

Xi+x,j+y,:W
cnn
y,x,:,: + bcnn (16)

where, bcnn ∈ RCout is the CNNs bias, the overall output
Convi,j, : (·) is a vector at each position (i, j, :).

Next, we replace the dot product between Xi+x,j+y,: and
W cnn

y,x,:,: in Eq. (16) with a summation across the channel
dimension to get:

Convi,j,:(X) =
∑

(x,y)∈Ω

Cin∑
c=0

Xi+x,j+y,cW
cnn
y,x,c,: + bcnn

(17)

Afterwards we change the order of the summation and
obtain:

Convi,j,:(X) =

Cin∑
c=0

∑
(x,y)∈Ω

Xi+x,j+y,cW
cnn
y,x,c,: + bcnn

(18)

To relate Eq. (18) to the Spiral FC (Eqs. (3) to (5)), we
first create a function:

g(x, y, c) =

{
1, if x = ϕi(c) and y = ϕj(c)

0, otherwise
(19)

Then we apply the Eq. (19) on the kernel weights W cnn

of the CNNs to obtain:

W̃ cnn
y,x,c,: = g(x, y, c) ·W cnn

y,x,c,: (20)



Subsequently, we substitute the weights defined
in Eq. (18) with the weights in Eq. (20):

Convi,j,:(X)

=

Cin∑
c=0

∑
(x,y)∈Ω

Xi+x,j+y,cW̃
cnn
y,x,c,: + bcnn

=

Cin∑
c=0

∑
(x,y)∈Ω

g(x, y, c)Xi+x,j+y,cW
cnn
y,x,c,: + bcnn

=

Cin∑
c=0

Xi+ϕi(c),j+ϕj(c),cW
spiral
c,: + bspiral

= Spiral FCi,j,:(X)

(21)

where, W spiral and bspiral are already introduced
in Eq. (3).

Consequently, we have demonstrated how the Spiral
FC can be derived from convolutions. It is noteworthy
that Eqs. (19) to (21) reveal that the Spiral FC assumes spar-
sity within the convolution operation, indicating its poten-
tial advantages and distinctive characteristics compared to
traditional dense convolution layers.

B.2. How is MHSA related to CNNs?

To formulate, the multi-head self-attention weight matrix
for each head is denoted as Wmhsa,h ∈ RCin×Cout , and the
bias is denoted as bmhsa ∈ RCout . Furthermore, h refers to
each individual head and Nh represents the total number of
heads. The process of MHSA applied to the input X ∈
RH×W×Cin on position (i, j, :) can be arranged as:

MHSAi,j,:(X) =

Nh∑
h=1

X:,:,Ch
in
Wmhsa,h

Ch
in ,:

+ bmhsa (22)

where, Ch
in illustrates the division of the input channel

corresponding to the hth head, and it is incorporated into
the computation for each head h.

While in the work [9], it is demonstrated that MHSA can
be represented in a manner similar to CNNs:

MHSAi,j,:(X)

=

Nh∑
h=1

Xi+∆i(h),j+∆j(h),Ch
in
Wmhsa,h

Ch
in ,:

+ bmhsa

=

Nh∑
h=1

Ch
in∑

c=0

Xi+∆i(h),j+∆j(h),cW
mhsa,h
c,: + bmhsa

(23)

where, all relative positional shifts for a kernel of
size

√
Nh ×

√
Nh at position (i, j) are contained in

{∆i(h),∆j(h)} = {(−1, 0), (−1, 1), (−1, 2), . . . }.

B.3. How is SpiralMLP related to MHSA?

Through a similar technique to Eq. (20), we estab-
lish a connection between MHSA and SpiralMLP through
CNNs. Firstly, we augment Wmhsa,h by multiplying with
the Eq. (19) to obtain:

W̃mhsa,h
c,: = g(x, y, c) ·Wmhsa,h

c,: (24)

where, W̃mhsa,h is dependent on the position along
the kernel height, width and input channel. Substitute it
into Eq. (23):

MHSAi,j,:(X)

=

Nh∑
h=1

Ch
in∑

c=0

Xi+∆i(h),j+∆j(h),cW̃
mhsa,h
c,: + bmhsa

=

Nh∑
h=1

Ch
in∑

c=0

Xi+ϕi(c),j+ϕj(c),cW
mhsa,h
c,: + bmhsa

=

Cin∑
c=0

Xi+ϕi(c),j+ϕj(c),cW
spiral
c,: + bspiral

= Spiral FCi,j,:(X)

(25)

where, W spiral and bspiral are already introduced
in Eq. (3).

Eq. (25) demonstrates the relationship between Spiral
FC and MHSA. Drawing a parallel with the relationship be-
tween CNNs and Spiral FC, we can conclude that Spiral FC
exhibits a significantly sparser receptive field compared to
MHSA. This highlights the distinctive characteristic of Spi-
ral FC in terms of its sparse attention mechanism compared
to the dense attention mechanism of MHSA.

C. Model Zoo and Training Details
C.1. Model Zoo Configurations and Performances

We implement five models according to PVT style,
named SpiralMLP B1 to B5, and three models based
on Swin-style, named as SpiralMLP-T, SpiralMLP-S,
SpiralMLP-B.

SpiralMLP variants in PVT-style are detailed in Tab. 8.
Each stage contains multiple Spiral Blocks with uniform
configurations, where the parameters S, E, C, and L de-
note the shift size, expansion ratio, channel dimension, and
the number of layers in each stage, respectively.

SpiralMLP variants in Swin-style are shown in Tab. 9
and Fig. 7. The input image dimension is 224 × 224. The
process ’concat n × n’ refers to the concatenation of fea-
tures from n × n neighboring features in a patch. This op-
eration effectively downsamples the feature map by a factor
of n. The notation ’96-d’ represents a linear layer whose
output dimension is 96. In the term [(3,2), 96] indicates that
Amax = 3, k = 2, Cout = 96.



Output Size Layer Name PVT-Style
B1 B2 B3 B4 B5

Stage1 H
4 × W

4

Overlapping S1 = 4
Patch Embedding C1 = 64 C1 = 96

SpiralMLP E1 = 4 E1 = 4 E1 = 4 E1 = 4 E1 = 4
Block L1 = 2 L1 = 2 L1 = 3 L1 = 3 L1 = 3

Stage2 H
8 × W

8

Overlapping S2 = 2
Patch Embedding C2 = 128 C2 = 192

SpiralMLP E2 = 4 E2 = 4 E2 = 4 E2 = 4 E2 = 4
Block L2 = 2 L2 = 3 L2 = 4 L2 = 8 L2 = 4

Stage3 H
16 × W

16

Overlapping S3 = 2
Patch Embedding C3 = 320 C3 = 384

SpiralMLP E3 = 4 E3 = 4 E3 = 4 E3 = 4 E3 = 4
Block L3 = 4 L3 = 10 L3 = 18 L3 = 27 L3 = 24

Stage4 H
32 × W

32

Overlapping S4 = 2
Patch Embedding C4 = 512 C4 = 768

SpiralMLP E4 = 4 E4 = 4 E4 = 4 E4 = 4 E4 = 4
Block L4 = 2 L4 = 3 L4 = 3 L4 = 3 L4 = 3

Parameters (M) 14 24 34 46 68
FLOPs (G) 2.0 3.6 5.6 8.2 11.3

Accuracy Top-1 (%) 79.8 81.9 83.4 83.8 84.0

Table 8. Configurations of SpiralMLP variants in PVT-style.

C.2. Experimental Setup for Image Classification

We train our model on ImageNet-1k [50], which contains
about 1.2M images. The accuracy report is standard Top-1
accuracy on the validation set containing roughly 50k im-
ages, evenly distributed among 1000 categories. The code
of our implementation is inspired by CycleMLP as well as
DeiT and is written in Pytorch. Our augmentation policy
includes RandAugment [10], Mixup [80], Cutmix [78], ran-
dom erasing [81] and stochastic depth [24]. The optimizer
used is AdamW [44] with learning rate of 5 × 10e-4 with
momentum of 0.9 and weight decay of 5× 10e-2.

C.3. Experimental Setup for Object detection and
Instance Segmentation

For object detection and instance segmentation experi-
ments, we train our model on COCO [38] containing 118k
training images together with 5k validation images. We em-
ploy the mmdetection toolbox [5] and use RetinaNet [37]
and Mask R-CNN [19] as the framworks with SpiralMLP
variants as backbones. The weights are initialized with the
pretrained weights from ImageNet-1k and additional added
layers are initialized using Xavier [16] initialization. The
optimizer is AdamW [44] with a learning rate of 1× 10e-4.
The images are resized to 800 for the shorter side and a
maximum limit of 1333 pixels for height and width of the
image. The model is trained on 4 A100 GPUs with the batch
size of 32 for 12 epochs.

C.4. Experimental Setup for Semantic Segmenta-
tion

The semantic segmentation is conducted on
ADE20K [82], which consists of 20k training images
and 2k validation images. The frameworks used for this
purpose are Semantic FPN [26] and UperNet [70], employ-
ing SpiralMLP with ImageNet-1k pretrained weights as the
backbones. For optimization, the AdamW [44] optimizer is
chosen. In the case of Mask R-CNN, the optimizer is set
with an initial learning rate of 0.0001 and a weight decay
of 0.05. For Semantic FPN, the same initial learning rate
of 0.0001 is used, but the weight decay is lower, at 0.0001.
The training process is carried out on 4 A100 GPUs. A
batch size of 32 is maintained throughout, and the model
undergoes training for 12 epochs.

D. Merge Head

D.1. How does the Merge Head Work?

In Eq. (7), Merge Head employs a trainable weights
a to determine the contribution of Xself ∈ RH×W×Cout ,
Xcross ∈ RH×W×Cout , from Channel FC and Spiral FC, re-
spectively. For a clearer understanding, we present the ten-
sor shape of each step in Merge Head, as shown in Tab. 10.
Rather than merely employing a straightforward addition,
the merge head innovatively takes into account the inputs
themselves to formulate the trainable weights a. This ap-
proach allows for a more dynamic and input-responsive



Output Size SpiralMLP-T SpiralMLP-S SpiralMLP-B

Stage1 4× (56× 56)
concat 4× 4, 64-d, LN concat 4× 4, 96-d, LN concat 4× 4, 96-d, LN

[(3,2), 64]×2 [(3,2), 96]×3 [(3,2), 96]×3

Stage2 8× (28× 28)
concat 2× 2, 128-d, LN concat 2× 2, 192-d, LN concat 2× 2, 192-d, LN

[(3,2), 128]×2 [(3,2), 192]×4 [(3,2), 192]×4

Stage3 16× (14× 14)
concat 2× 2, 320-d, LN concat 2× 2, 384-d, LN concat 2× 2, 384-d, LN

[(3,2), 320]×6 [(3,2), 384]×18 [(3,2), 384]×24

Stage4 32× (7× 7)
concat 2× 2, 512-d, LN concat 2× 2, 768-d, LN concat 2× 2, 768-d, LN

[(3,2), 512]×2 [(3,2), 768]×3 [(3,2), 768]×3
Parameters (M) 15 56 67

FLOPs (G) 2.3 9.1 11.0
Accuracy Top-1 (%) 79.6 83.3 83.6

Table 9. Configurations of SpiralMLP variants in Swin-style.

Figure 7. The architecture of SpiralMLP in Swin-style.

Step Tensor Shape

(Xself, Xcross) (RH×W×Cout ,RH×W×Cout)
F(·) RH·W×Cout

Average R1×Cout

Wmerge R2×Cout

Table 10. Tensor shape of each step in Merge Head.

weight adjustment, enhancing the effectiveness of the merg-
ing process.

D.2. Complexity of Merge Head.

Two inputs are both of shape RH×W×C . The addition
has O(HW ). While the reshaping operation F(·) is im-
plemented by torch.flatten() with O(1). The aver-
age calculation is implemented by torch.mean() with
O(HW ). The multiplication involves Wmerge ∈ R2,1 con-
tributes O(1). Therefore, the total complexity of this pro-
cess is linear O(HW ).

E. Why Spiral FC works?
Eq. (21) indicates that SpiralMLP, along with other criss-

cross MLPs, can be effectively implemented using a spe-
cialized convolution layer. Currently, deformable convolu-
tion [11] emerges as the optimal method for this purpose.

In the given scenario as shown in Fig. 8, points are identi-
fied as (ox, oy), (µx, µy), (νx, νy), and (µx, νy), all located
on feature map X . Specifically, when (ox, oy) is consid-
ered the reference point, the points (µx, µy) and (νx, νy)
are categorized into set P . This set includes pairs that are
either horizontally or vertically aligned with the reference
point (ox, oy). The point (µx, νy) falls into set Q, which
comprises pairs that can be located at any position within
the feature map X . Then the set P and set Q are defined as:

P = {(µx, µy) ∈ R2|(µx = ox ∨ µy = oy)} (26)

Q = {(µx, νy) ∈ R2} (27)

We further denote the YC ∈ RH×W×C as the output
of the convolution layer, while X ∈ RH×W×C is still the
feature map, this is similar to Eq. (21):



Figure 8. Spiral FC covers a more comprehensive receptive field.

YC =

Cin∑
c=0

Xi+ϕ̄i(c),j+ϕ̄j(c),cWc,: + b (28)

where, ϕ̄i(·), ϕ̄j(·) denote the universal offset functions.
We take two architectures with criss-cross offset func-

tions as examples. When using CyelcMLP [6] as an exam-
ple, the offset function is updated into:

ϕcycle
i (c) = (c mod SH)− 1 (29)

ϕcycle
j (c) = (⌊ c

SH
⌋ mod SW )− 1 (30)

where, SH , SW are the predefined step size.
When using ASMLP [36], the offset function is updated

into:

ϕas
i (c) = ⌊ c

C/s
⌋ − ⌊s

2
⌋ · d (31)

ϕas
j (c) = ⌊ c

C/s
⌋ − ⌊s

2
⌋ · d (32)

where, s is the shift size and d is the dilation rate.
In Fig. 8 (a), points (µx, µy) and (νx, νy) from set P are

reachable by the offset functions ϕcycle(·), and ϕas(·) due to
their placement along the horizontal or vertical axes. How-
ever, as illustrated in Fig. 8 (b), points that do not lie on
these axes pose a challenge for the criss-cross methodol-
ogy, which inherently lacks the capability to capture such
spatial information effectively.

To address this limitation, Fig. 8 (c) suggests the adop-
tion of a predefined multi-helix offset approach. This
method, while effective, still offers room for optimization
to achieve model efficiency in terms of size and compu-
tational speed. A viable solution is the refinement of the
multi-helix offset into a spiral-like offset function. This
adjustment not only enables the model to recognize points
from set Q—those not aligned with the horizontal or verti-
cal axes—but also maintains a compact model architecture
and ensures rapid processing speeds.

Model Params(M) Throughput (/sec) Wall-Clock (s)

Spiral-B1 14 425 22.8
Spiral-B2 24 253 30.5
Spiral-B3 34 143 52.2
Spiral-B4 46 94 72.5
Spiral-B5 68 89 79.2

Cycle-B1 [6] 15 347 23.8
Cycle-B2 27 207 36.0
Cycle-B3 38 117 60.4
Cycle-B4 52 79 84.0
Cycle-B5 76 75 92.0

ResNet-152 [20] 60 152 45.7
Vit-B/16 [14] 86 102 75.2

Deit-B/16 [61] 86 97 78.3

Table 11. Throughput and wall-clock test.

F. Latency & Throughput Analysis
As shown in Tab. 11, throughput testing is conducted

on a single NVIDIA A100 GPU, with a batch size of 32
and image resolution of 3x224x224; wall-clock testing is
conducted on ImageNet-1k with a single NVIDIA A100
GPU, with a batch size of 64, the number of total batches
to 100 and image resolution of 3x224x224. Furthermore,
we evaluate the latency speeds on one A100 across various
architectures for input resolutions of 2242, 3842, and 5122.
These results are detailed in Tab. 12.

It is evident that SpiralMLP is faster than other MLP-
based models when considering the scale of model size.
Additionally, the PVT [67] showcases even faster process-
ing speeds, mainly due to its utilization of dot product oper-
ations, inherently benefiting from accelerated computation.
The models used for evaluation are directly extracted from
their official implementations.

G. Resolution Compatibility
We compare the image classification models resolution

compatibility with Top-1 accuracy on ImageNet-1k, with
models pre-trained on 224 x 224 images and tested at var-



Model 2242 3842 5122 Params(M) Model 2242 3842 5122 Params(M)

Spiral-B1 11.74 11.83 11.52 14 Cycle-B1 [6] 12.12 12.06 12.23 15
Spiral-B2 20.81 21.11 20.29 24 Cycle-B2 21.66 21.36 21.12 27
Spiral-B3 32.33 32.53 31.38 34 Cycle-B3 33.23 32.89 32.29 38
Spiral-B4 47.00 47.39 45.95 46 Cycle-B4 47.86 48.29 46.73 52
Spiral-B5 39.22 39.34 38.34 68 Cycle-B5 41.00 40.87 39.59 76

ATM-xT [69] 15.01 15.32 14.86 15 Wave-T-dw [58] 16.91 15.83 16.01 15
ATM-T 25.83 26.66 25.43 27 Wave-T 18.56 17.48 17.47 17
ATM-S 37.47 38.41 37.21 39 Wave-S 31.97 30.76 30.61 31
ATM-B 55.45 55.85 53.39 52 Wave-M 48.98 47.43 46.94 44
ATM-L 47.24 45.98 44.78 76 Wave-B 41.99 40.50 40.27 64

PVT-Tiny [67] 8.54 8.72 8.55 13 PVTv2-B1 [68] 9.08 9.04 9.12 14
PVT-Small 15.73 15.75 15.62 25 PVTv2-B2 17.14 17.45 17.21 25

PVT-Medium 26.78 27.48 26.71 44 PVTv2-B3 30.57 30.21 30.32 45
PVT-Large 39.28 39.75 38.68 61 PVTv2-B4 44.77 44.73 43.51 63

- - - - - PVTv2-B5 56.64 56.88 55.19 82

Table 12. Latency analysis measured in milliseconds(ms) on one A100. A single image with differing resolutions serves as the input

Model Params(M) 128 224 256 384

Spiral-B5 68 77.6 84.0 83.8 83.4
Cycle-B [6] 88 77.0 83.2 83.1 82.7

ViT-B/16 [14] 86 - 81.0 81.6 79.0
ResNet-152 [20] 60 68.7 78.3 78.4 77.4
DeiT-B/16 [61] 87 - 81.7 - 82.5

Table 13. Resolution compatibility comparison.

ious other resolutions without additional fine-tuning, as
shown in Tab. 13.

H. Spiral in AttentionViz

In the work AttentionViz [75], the authors introduce a
visualization tool for analyzing transformer models, partic-
ularly focusing on the interaction between keys and queries
distributions across various heads and layers. A notable dis-
covery in their research is the identification of a spiral-like
pattern. This pattern suggests that the keys and queries in
transformers are spatially aligned in a manner resembling a
spiral. The phenomenon results from position vectors that
are generated using trigonometric functions, mapping onto
a helical curve in a high-dimensional space. In linguistics
models, this refers to the arrangement of words or parts of
words; while in vision transformers, it relates to the organi-
zation of pixel patches.

This spiral distribution is reflective of the initial ordering
vector given to transformers, illustrating how positional in-
formation is embedded within the model. Furthermore, the
research reveals that transformer heads displaying a spiral
shape or having clusters of queries/keys tend to yield more

dispersed search results.


