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This supplementary material contains the following con-

tent:

A. Review of evaluated methods and their search

spaces. In this section, we provided a detailed de-

scription of methods employed to evaluate the efficacy

of our proposed protocol for model selection. Addi-

tionally, it outlines various hyperparameters for each

method and their respective feasible range.

B. Generation of noisy ground truth bboxes. This sec-

tion delineates the methodology for generating noisy

ground truth (GT) bounding boxes (bboxes) to analyze

their impact on model selection.

C. Pseudo-bboxes performance across different selec-

tion steps. This section presents the performance of

pseudo-bboxes at different selection steps of our pro-

posed method.

D. Localization evaluation in WSOL (thresholded-

IoU vs IoU). This section describes an ongoing

challenge in WSOL where discrepancies in localiza-

tion performance exist between the commonly used

MaxBoxAcc and the IoU metric.

E. Localization Evaluation with different thresholds.

This section presents the results at different thresholds

along with their average.

F. Experiments with medical datasets. To show the

generalizability of our proposed evaluation protocol

across various domains, we employ medical datasets.

A. Review of Evaluated Methods and their

Search Spaces

A.1. Evaluated Methods

To assess the efficacy of the proposed protocol, we em-

ploy eight methods published in top-tier venues from 2016

to 2023. These methods are presented chronologically

within this section, providing a comprehensive overview.

Class activation mapping (CAM) [12] is able to extract

an activation map for a particular class using a pre-trained

CNN-classifier with global average pooling. It generates

the final map by aggregating different activation maps from

the penultimate convolution layer based on the contribution

towards each class by using weights from the last fully con-

nected layer.

Hide-and-seek (HaS) [7] force the network to look beyond

discriminative regions of a particular object by augment-

ing the input image. It hides patches of input image during

training by employing two hyper-parameters; drop rate and

grid size.

Adversarial complementary learning (ACoL) [11] em-

ployees an architecture with two parallel classifier heads

that tires to find complementary regions by adversarially

erasing high-scoring activations.

Attention-based dropout layer (ADL) [4] works similarly

as ACoL by erasing high-score activation to force by em-

ploying drop masks generated without second classifiers

head.

Non-local combinational class activation maps (NL-

CCAM) [9]. In this paper, the author argues that employing

the activation map of the class with the highest classifier’s

score may only highlight discriminative regions and for cer-

tain images it tends to focus on background regions. To

address this limitation, the author proposes to combine acti-

vation maps of different classes. This combination is based

on the respective probability score of each, encompassing a

spectrum from the highest to the lowest.

Token semantic coupled attention map (TS-CAM) [5].

TS-CAM is a cascaded ViT-CNN architecture that proposes

to redistribute class information to patch tokens. This is

achieved by implementing a CNN-based classification (CL)

head atop the patch tokens, thereby rendering the CLS to-

ken class-agnostic. Therefore, these CLS tokens are com-

bined with the activation map extracted from the last con-

volutional layer to produce an activation map highlighting

different object parts of a particular class.

Spatial calibration module (SCM) [1]. This paper intro-

duced an SCM module atop the transformer features to align

the boundaries of the generated map with the object bound-

aries by avoiding partial activation in different areas of the

activation map. This module integrates semantic similari-

ties presented in patch tokens and their spatial relationships

into a unified model. SCM effectively recalibrates the trans-
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former’s attention and semantic representations to mitigate

the background noise and sharpen object boundaries.

Task-specific spatial-aware token (SAT). [8] This pa-

per introduces a spatial-aware token (SAT) into the trans-

former’s input space. Like CLS token that is able to accu-

mulate information for CL tasks, it is incorporated to ag-

gregate the global representation of the object of interest.

Furthermore, the SAT is a passed-to spatial-query attention

module that treats the SAT as a query to calculate similarity

with different patches and produces probabilities for fore-

ground object for producing accurate localization maps.

A.2. Hyperparamter Search Space

To fairly compare different WSOL methods, we took

steps to minimize human biases during training. This in-

cludes employing pseudo-bboxes for the evaluation and

sampling hyperparameter values from the feasible range,

except for annotations on the test set, which were used only

to assess the trained model’s performance.

Each method was trained using four shared hyperparam-

eters, while the additional hyperparameters were specific to

each model. We sampled the values for these hyperparam-

eters from their feasible range. A cartesian product of these

and shared hyperparameters was computed to create the fi-

nal grid of hyperparameters for training each model. A de-

tailed summary of the hyperparameters employed to train

different WSOL models is presented in Tab.S1.

Method Hyperparameter
Sampling

Distribution
Range

Common HPs

LR, WD, Gamma LogUniform [10−5
, 100]

Step Size Uniform
CUB: [5 − 45]
ILSVRC: [2 − 9]

CAM [12], TS-CAM [5]

SCM [1], NL-CCAM [9]
Common HPs - -

HaS [7] Drop Rate, Drop Area Uniform [0, 1]
ACoL [11] Erasing Threshold Uniform [0, 1]
ADL [4] Drop Rate, Erasing Threshold Uniform [0, 1]
SAT [8] Area Threshold Uniform [0, 1]

Table S1. Hyperparameter search space for different methods

Method
CUB (IoU) ILSVRC (IoU)

SS RPN CLIP SS RPN CLIP

Mean IoU (PG∗) 32.21 28.71 – 23.38 27.57 –

Mean IoU (PG∗, 20% Filtered) 33.69 37.89 – 34.99 37.17 –
Mean IoU (Top Box,

20% by Objectness Score)
39.90 69.80 – 44.90 54.02 –

Mean IoU (Top Box,

20%, PG∗+Scoring)
39.98 71.23 – 45.07 61.08 –

Upper Bound (Select by

IoU with GT)
64.07 83.66 – 65.46 84.42 –

IoU from Otsu – – 68.80 – – 64.41

IoU using 1K Threshold – – 69.56 – – 65.78
∗PG: Pointing Game

Table S2. Performance of pseudo-bboxes obtained using different

off-the-shelf region proposal methods across multiple refinement

stages over the validation set. The table highlights the incremental

improvement in IoU through various selection steps.

B. Generation of Noisy Ground Truth Bboxes

In the main paper, we introduce a validation protocol

designed to evaluate the robustness of the proposed model

selection techniques in the presence of noisy GT bboxes.

This protocol systematically perturbs the GT bboxes, ini-

tially used for model selection, to emulate conditions of

noisy or imprecise GT annotations. To produce noisy GT

bboxes, a sequence of random transformations is applied

to the GT bboxes, creating varying noise levels. For each

transformation, a total of ten unique noise levels are de-

fined. These levels signify the maximum likelihood of de-

formation at each noise level. This likelihood is derived by

sampling the deformation value using a uniform distribution

that varies from 5 to 50, with intervals set at 5. To generate

nosy bboxes we, first apply, scaling transformation to the

GT bboxes between -50% and +50% with a maximum like-

lihood of a particular noise level. Following the scaling, we

apply shift transformation to the scaled bbox by choosing

a random shift length, where the shift length is set between

0% and the maximum size percentage corresponding to a

particular noise level. Finally, we modify the aspect ratio of

bbox based on a probability factor ‘p’ which indicates the

likelihood, representing a specific noise level.

C. Pseudo-bboxes Performance Across Differ-

ent Selection Steps

Different off-the-shelf models, SS, RPN, and CLIP, are

employed to produce pseudo-bboxes. These methods gen-

erate a set of class-agnostic pseudo-bboxes. To select dis-

criminative boxes from a pool of object proposals, the point-

ing game analysis was employed [10]. This involves har-

vesting CAM from a pre-trained classifier and pinpoint-

ing the peak activation that is used to select discriminative

boxes. Despite the initial filtering of bboxes via the pointing

game, a substantial number of bboxes remained. To address

this, we employ a sequential refinement process, in which

we initially filter the top 20% based on objectness or clas-

sifier score for boxes obtained from RPN and SS, respec-

tively. Subsequently, the pointing game was employed to re-

fine this selection, followed by selection of top-performing

boxes based on score. In the case of CLIP, we utilized

Otsu’s thresholding method to identify binary maps, upon

which bboxes were delineated around the largest connected

areas. A comprehensive description of the proposed method

for generating pseudo-bboxes is provided in the main paper.

The performance of pseudo-bboxes at different selection

steps is presented in Tab.S2. This table shows that as we se-

lect relevant bboxes generated by SS or RPN at each stage,

we progressively choose better-performing bboxes, result-

ing in reliable performance relative to the upper bound per-

formance when using GT bboxes to select top-performing

bbox. Initially, pseudo-bboxes generated by SS and RPN



Method BackboneBackbone
CUB-200-2011 (MaxBoxAcc) CUB-200-2011 (IoU) ILSVRC (MaxBoxAcc) ILSVRC (IoU)

CL GT RPN CLIP SS CL GT RPN CLIP SS CL GT RPN CLIP SS CL GT RPN CLIP SS

CAM [12] (cvpr,2016) ResNet50 66.98 70.40 71.10 70.62 69.89 55.53 56.71 56.88 56.65 56.76 61.48 64.06 63.60 63.90 63.60 56.17 57.89 57.42 57.68 57.42

HaS [7] (iccv,2017) ResNet50 67.62 75.85 75.85 75.85 74.73 57.01 59.81 59.81 59.81 59.39 61.69 63.77 63.94 63.77 63.30 56.81 58.49 58.39 58.49 57.32

ACoL [11] (cvpr,2018) ResNet50 66.62 74.64 74.64 75.37 74.14 55.32 58.29 58.29 58.55 58.13 61.98 62.93 62.75 63.45 62.92 55.62 56.39 56.32 56.94 56.39

ADL [4] (cvpr,2019) ResNet50 67.82 76.63 76.63 76.06 74.99 55.64 59.12 59.12 58.93 58.32 62.81 65.11 65.97 65.11 65.19 56.39 58.46 58.37 58.55 58.54

NL-CCAM [9] (wacv,2020) VGG-GAP 64.15 65.58 65.58 65.22 45.97 54.11 54.76 54.76 54.59 47.88 58.42 60.63 60.63 60.63 52.72 51.59 54.98 54.98 54.98 49.44

TS-CAM [5] (iccv,2021) DeiT-S 88.36 90.19 90.35 89.52 88.71 69.14 69.78 69.83 69.95 68.36 56.40 66.75 66.75 66.75 66.17 53.67 59.54 59.54 59.54 59.00

SCM [1] (eccv,2022) DeiT-S 88.47 91.56 92.25 92.26 91.76 68.64 70.27 70.89 70.93 70.34 57.92 61.76 61.75 61.75 59.76 52.13 54.55 54.56 54.56 53.47

F-CAM [2] (wacv,2022) ResNet50 24.95 89.83 89.23 89.81 88.26 37.72 68.79 68.12 68.62 68.30 – – – – – – – – – –

SAT [8] (iccv,2023) DeiT-S 79.70 92.14 92.45 91.45 92.23 63.13 73.67 73.59 72.92 73.61 64.94 70.12 67.08 70.13 70.13 56.09 62.80 58.55 62.80 62.80

Table S3. Comparative Analysis of MaxBoxAcc (IoU-50) versus IoU on CUB and ILSVRC with different model selection methods.

are filtered based on objectness or classifier scores, followed

by a pointing game analysis for further refinement. The re-

sults indicate a significant improvement in the mean inter-

section over union (IoU) across these selection stages. For

example, after the initial selection and filtering of the top

20% based on objectness scores, the IoU increases substan-

tially, demonstrating the efficacy of our proposed method.

In contrast, CLIP generates activation maps that highlight

particular objects. Otsu’s thresholding method is employed

to convert these maps into binary images, enabling the de-

lineation of bboxes around the largest connected areas. De-

spite the single-stage selection process for CLIP-generated

maps, the resulting bounding boxes achieve competitive

performance.

D. Localization Evaluation in WSOL

(Thresholded-IoU vs IoU)

So far, we have reported the localization performance us-

ing MaxBoxAcc metric [3]. It is also known as as GT-

known localization metric. It scores one point when the

IoU between the GT bbox and the predicted box is above

50%, otherwise, it scores 0. It is referred to IoU 5-0 as

well. It is a well established and commonly used metric in

WSOL. In addition to IoU-50, we report the IoU in Tab.3

of the main paper. These results show that model selection

using CL accuracy still lead to poor IoU. However, selec-

tion using our proposed pseudo-bboxes yields competitive

IoU compared to when using oracle bboxes.

The comparison based on IoU (Tab.3 of the main paper)

lead us to an interesting result presented in Tab.S3. This

table shows that MaxBoxAcc, using the commonly oracle

bboxes, gives largely higher localization scores compared

to the exact localization accuracy reported by IoU. For in-

stance, SAT method [8] scores 92.14% in MaxBoxAcc,

while it only scores 73.12% over CUB dataset. When con-

sidering only MaxBoxAcc, the results give the impression

that CUB dataset is saturated, especially when the same au-

thors [8] have reported a MaxBoxAcc of 98.45%. How-

ever, when inspecting IoU metric, localization is still low

at 73.12%.

In addition, since MaxBoxAcc is based on threshold-

ing, extreme localization scores can hit the same scoring

point. For instance, a prediction with IoU = 50.1% scores

the same point as when the prediction is IoU = 99.99%.

However, both IoU = 49.9%, IoU = 1% scores 0 point in

MaxBoxAcc. This makes localization evaluation less effi-

cient.

Despite its common usage in the literature, the aforemen-

tioned limitations of MaxBoxAcc suggest that reporting

IoU along with MaxBoxAcc could be beneficial in better

assessing localization performance of different methods in

WSOL.

Since CUB dataset is relatively easier than ILSVRC

dataset, the latter paints a realistic evaluation of the progress

that has been done in WSOL. Since the work of Zhou et

al. [12] in 2016 up to now, only ≈ 6%, and ≈ 4.9% of im-

provement has been done in term of MaxBoxAcc and IoU,

respectively. This suggests that a lot of work is still needs

to be done to furthermore improve WSOL methods.

E. Localization Evaluation with different

thresholds

We have previously evaluated localization performance

using the MaxBoxAcc metric, which assigns a score of

one when the IoU between the GT bbox and the predicted

bounding box exceeds 50%, and a score of zero otherwise,

as well as using raw IoU without any threshold. In addi-

tion, we extend the evaluation of MaxBoxAcc by examin-

ing performance trends at multiple IoU thresholds, namely

IoU-30, IoU-50, and IoU-70, along with their aver-

age, termed MaxBoxAccV2, a metric commonly used in

the weakly supervised object localization (WSOL) litera-

ture [3]. The performance results for these thresholded IoU

metrics and their average are detailed in Tab.S4&S5. In con-

trast to raw IoU, the thresholded IoU metrics demonstrate

consistent trends when compared to MaxBoxAcc, which

are sufficient to offer meaningful insights into the results.

F. Experiments with medical datasets

To show the robustness and generalizability of our eval-

uation protocol across datasets with varying characteris-

tics, we extended our protocol to the task of localization

in histology images—a particularly challenging problem

due to its complexity and sensitivity, especially for non-

experts attempting to identify regions of interest. For this,



CL GT RPN CLIP SS

Method Select IoU-30 IoU-50 IoU-70 MaxBoxV2 IoU-30 IoU-50 IoU-70 MaxBoxV2 IoU-30 IoU-50 IoU-70 MaxBoxV2 IoU-30 IoU-50 IoU-70 MaxBoxV2 IoU-30 IoU-50 IoU-70 MaxBoxV2

BT-TT 73.76 32.99 6.161 37.63 93.95 70.40 20.05 61.46 94.30 71.10 19.74 61.71 94.33 70.62 19.46 61.47 94.06 69.89 20.38 61.44

BT-VT – – – – 93.13 69.50 19.07 60.56 94.25 70.43 19.22 61.30 93.73 69.88 18.46 60.69 70.05 27.97 12.80 36.94

BV-TT 69.72 29.37 5.143 34.74 93.95 70.40 20.05 61.46 93.95 70.40 20.05 61.46 94.70 69.76 18.46 60.97 90.05 61.20 16.44 55.89

CAM [12]

(cvpr’16)

ResNet50
BV-VT – – – – 93.61 69.20 19.33 60.71 93.61 68.93 19.03 60.52 94.70 67.98 16.58 59.75 58.66 22.79 15.84 32.43

BT-TT 71.48 37.00 11.25 39.91 94.59 75.85 28.49 66.31 94.59 75.85 28.49 66.31 94.59 75.85 28.49 66.31 94.64 74.73 27.42 65.59

BT-VT – – – – 92.33 74.68 29.15 65.38 94.44 75.69 28.27 66.13 94.14 75.69 27.71 65.84 67.22 25.42 12.08 34.90

BV-TT 66.15 30.11 8.715 34.99 93.16 75.49 30.18 66.27 93.57 74.92 29.20 65.89 94.87 73.38 23.76 64.00 92.85 72.69 30.53 65.35

HaS [7]

(iccv’17)

ResNet50
BV-VT – – – – 92.33 74.68 29.15 65.38 93.49 74.02 28.99 65.5 94.51 73.24 23.45 63.73 61.28 22.43 27.09 36.93

BT-TT 89.48 46.59 7.490 47.85 96.35 74.64 20.81 63.93 96.35 74.64 20.81 63.93 97.20 75.37 20.29 64.28 96.85 74.14 19.41 63.46

BT-VT – – – – 95.73 73.50 20.65 63.29 96.25 73.83 20.59 63.55 96.87 74.83 19.60 63.76 88.29 33.43 9.164 43.62

BV-TT 80.47 34.89 6.161 40.50 96.35 74.64 20.81 63.93 96.35 74.64 20.81 63.93 97.42 72.29 16.87 62.19 93.71 56.04 8.560 52.77

ACoL [11]

(cvpr’18)

ResNet50
BV-VT – – – – 95.73 73.50 20.65 63.29 96.25 73.83 20.59 63.55 97.25 72.21 16.60 62.01 88.60 27.85 6.817 41.08

BT-TT 81.08 40.97 7.973 43.34 96.47 76.63 23.14 65.41 96.47 76.63 23.14 65.41 95.35 76.06 23.16 64.85 95.46 74.99 21.86 64.10

BT-VT – – – – 96.27 76.21 22.62 65.03 96.20 76.52 23.00 65.24 95.21 75.92 22.73 64.61 76.85 27.39 10.01 38.08

BV-TT 77.89 37.17 6.144 40.40 95.40 75.83 23.16 64.79 93.63 75.97 27.25 65.61 96.63 75.80 20.31 64.24 75.45 32.08 6.040 37.85

ADL [4]

(cvpr’19)

ResNet50
BV-VT – – – – 94.87 72.73 22.69 63.43 93.04 75.85 24.02 64.30 96.08 74.73 19.57 63.46 64.03 22.21 5.505 30.58

BT-TT 90.36 52.67 12.92 51.98 91.49 65.58 19.38 58.81 91.49 65.58 19.38 58.81 91.54 65.22 18.89 58.54 76.68 45.97 17.77 46.80

BT-VT – – – – 88.74 64.44 18.55 57.24 90.81 65.27 19.12 58.4 90.42 62.54 18.55 57.17 72.02 31.89 15.15 39.68

BV-TT 90.36 52.67 12.92 51.98 91.49 65.58 19.38 58.81 91.49 65.58 19.38 58.81 91.54 65.22 18.89 58.54 76.68 45.97 17.77 46.80

CCAM [9]

(wacv’20)

VGG
BV-VT – – – – 90.12 62.44 18.77 57.11 91.37 64.84 19.27 58.49 90.42 62.54 18.55 57.17 72.02 31.89 15.15 39.68

BT-TT 85.07 51.77 20.34 52.39 99.22 90.19 55.31 81.57 99.15 90.35 55.16 81.55 98.96 89.52 55.91 81.46 98.92 88.71 51.25 79.62

BT-VT – – – – 99.17 89.33 51.89 80.13 99.03 90.16 54.21 81.13 98.60 89.52 55.10 81.07 66.13 29.49 13.87 36.49

BV-TT 72.41 39.17 13.72 41.76 98.96 89.52 55.91 81.46 98.96 89.52 55.91 81.46 99.11 89.16 53.50 80.58 95.27 77.39 40.90 71.18

TS-CAM [5]

(iccv’21)

DeiT-S
BV-VT – – – – 98.56 88.85 53.40 80.27 98.87 88.90 51.58 79.78 98.44 88.95 50.98 79.45 59.52 24.19 22.19 35.30

BT-TT 62.49 30.82 8.767 34.02 99.25 91.56 56.10 82.30 99.30 92.25 58.40 83.31 99.36 92.26 58.49 83.37 99.24 91.76 56.50 82.5

BT-VT – – – – 98.96 90.26 55.35 81.52 99.20 92.00 55.41 82.20 98.94 92.16 58.24 83.11 63.54 26.44 16.86 35.61

BV-TT 62.49 30.82 8.767 34.02 99.25 91.56 56.10 82.30 99.30 92.25 58.40 83.31 99.36 92.26 58.49 83.37 97.39 80.16 35.86 71.13

SCM [1]

(eccv’22)

DeiT-S
BV-VT – – – – 98.96 90.26 55.35 81.52 99.20 92.00 55.41 82.20 98.94 92.16 58.24 83.11 63.53 22.02 10.06 31.87

BT-TT 91.76 69.60 37.78 66.38 99.37 92.14 66.63 86.04 99.24 92.45 66.79 86.16 99.15 91.45 64.29 84.96 99.30 92.23 66.67 86.06

BT-VT – – – – 99.36 91.66 67.34 86.12 99.03 92.26 62.82 84.70 98.49 91.00 64.03 84.50 70.65 41.62 28.04 46.77

BV-TT 92.33 70.24 39.02 67.19 99.17 91.33 65.06 85.18 99.17 91.75 68.31 86.41 99.13 89.97 60.57 83.22 99.17 91.33 65.06 85.18

SAT [8]

(iccv’23)

DeiT-S
BV-VT – – – – 98.87 90.86 65.06 84.93 98.79 91.71 66.44 85.64 97.82 89.93 60.40 82.71 77.59 28.04 14.68 40.10

Table S4. Test-set MaxBoxAccV2 that is average of three threshold IoU-30, IoU-50, IoU-70 (here MaxBoxAccV2 is aerage at three

threhold) along with the it of WSOL models with different selection criteria on CUB. The select column presents (i) BT and BV indicate

model selection based on hyperparameter configurations using the test set and validation set, respectively; (ii) TT and VT indicate that

the threshold τ is selected using either the test set or validation set. For model selection on the validation set, we consider the GT as a

reference, a selection based on the CL performance and the three different pseudo-bboxes generation proposed in this work: RPN, CLIP

and SS. Our results for models selected with pseudo-bboxes are comparable to those of GT.

CL GT RPN CLIP SS

Method Select IoU-30 IoU-50 IoU-70 MaxBoxV2 IoU-30 IoU-50 IoU-70 MaxBoxV2 IoU-30 IoU-50 IoU-70 MaxBoxV2 IoU-30 IoU-50 IoU-70 MaxBoxV2 IoU-30 IoU-50 IoU-70 MaxBoxV2

BT-TT 73.16 46.29 20.86 46.77 81.99 64.06 40.22 62.09 81.59 63.60 39.55 61.58 82.02 63.90 39.98 61.96 81.59 63.60 39.55 61.58

BT-VT – – – – 81.98 63.90 39.59 61.82 79.49 62.89 37.64 60.00 81.09 63.88 39.85 61.60 68.59 46.97 39.84 51.80

BV-TT 73.81 46.83 21.26 47.30 81.99 64.06 40.22 62.09 81.59 63.60 39.55 61.58 82.06 64.01 40.02 62.03 81.59 63.60 39.55 61.58

CAM [12]

(cvpr’16)

ResNet50
BV-VT – – – – 81.88 63.88 39.94 61.9 79.49 62.89 37.64 60.00 81.09 63.88 39.85 61.60 70.13 45.91 39.51 51.84

BT-TT 65.09 37.82 16.15 39.68 81.3 63.77 42.08 62.38 81.54 63.94 41.7 62.39 81.3 63.77 42.08 62.38 81.43 63.30 39.26 61.33

BT-VT – – – – 81.16 63.86 41.67 62.23 78.59 62.08 37.35 59.34 80.35 63.28 40.95 61.52 68.92 49.02 37.13 51.69

BV-TT 72.59 45.80 21.01 46.46 81.54 63.94 41.7 62.39 81.55 63.34 39.77 61.55 81.82 63.54 39.56 61.63 81.43 63.30 39.26 61.33

HaS [7]

(iccv’17)

ResNet50
BV-VT – – – – 81.16 63.86 41.67 62.23 78.59 62.08 37.35 59.34 80.36 63.06 39.21 60.87 68.56 48.21 39.23 52.0

BT-TT 77.99 50.46 22.76 50.40 81.34 62.93 38.23 60.83 81.89 62.75 37.56 60.73 82.21 63.45 39.13 61.59 82.14 62.92 37.50 60.85

BT-VT – – – – 81.83 63.48 39.11 61.47 79.94 61.61 36.75 59.43 80.38 63.47 39.11 60.98 76.95 52.38 33.11 54.14

BV-TT 77.99 50.46 22.76 50.40 82.23 63.70 39.03 61.65 81.89 62.75 37.56 60.73 82.14 62.93 37.5 60.85 82.14 62.92 37.50 60.85

ACoL [11]

(cvpr’18)

ResNet50
BV-VT – – – – 81.83 63.48 39.11 61.47 80.45 61.31 35.89 59.21 81.37 62.80 37.43 60.53 76.95 52.38 33.11 54.14

BT-TT 67.71 39.80 16.84 41.44 82.67 65.11 41.63 63.13 82.51 65.97 41.70 63.39 82.51 65.11 41.63 63.08 82.64 65.19 41.92 63.25

BT-VT – – – – 82.66 65.2 41.49 63.11 80.68 64.29 37.49 60.82 81.65 65.04 41.33 62.67 69.47 49.61 41.59 53.55

BV-TT 70.90 44.23 20.57 45.23 82.67 65.28 41.88 63.27 82.64 65.18 41.92 63.24 82.69 65.32 41.79 63.26 82.58 65.06 41.28 62.97

ADL [4]

(cvpr’19)

ResNet50
BV-VT – – – – 82.66 65.2 41.49 63.11 80.41 62.30 37.63 60.11 81.65 65.04 41.33 62.67 72.96 47.09 41.32 53.79

BT-TT 73.84 49.80 24.99 49.54 77.84 60.63 38.39 58.95 77.84 60.63 38.4 58.95 77.83 60.63 38.39 58.95 72.34 52.72 31.22 52.09

BT-VT – – – – 77.72 60.52 38.02 58.75 77.19 60.52 37.76 58.49 77.44 60.56 38.17 58.72 67.94 46.63 31.16 48.57

BV-TT 73.84 49.80 24.99 49.54 77.84 60.63 38.39 58.95 77.84 60.63 38.4 58.95 77.83 60.63 38.39 58.95 72.34 52.72 31.22 52.09

CCAM [9]

(wacv’20)

VGG
BV-VT – – – – 77.72 60.52 38.02 58.75 77.19 60.52 37.76 58.49 77.44 60.56 38.17 58.72 67.94 46.63 31.16 48.57

BT-TT 12.45 6.476 2.144 7.023 82.91 66.75 43.77 64.47 82.91 66.75 43.77 64.47 82.91 66.75 43.77 64.47 82.56 66.17 42.87 63.86

BT-VT – – – – 82.74 66.65 43.77 64.38 79.95 65.12 41.18 62.08 80.42 65.32 43.55 63.09 67.53 47.63 35.03 50.06

BV-TT 12.45 6.476 2.144 7.023 82.91 66.75 43.77 64.47 82.52 66.14 42.94 63.86 82.91 66.75 43.77 64.47 73.60 55.7 35.03 54.77

TS-CAM [5]

(iccv’21)

DeiT-S
BV-VT – – – – 82.74 66.65 43.77 64.38 80.68 64.97 42.80 62.81 80.42 65.32 43.55 63.09 66.87 46.8 34.08 49.25

BT-TT 74.53 47.55 17.72 46.6 80.60 61.76 34.44 58.93 80.60 61.75 34.44 58.93 80.60 61.75 34.44 58.93 79.42 59.76 32.95 57.37

BT-VT – – – – 80.48 61.76 34.42 58.88 78.61 61.15 30.44 56.73 79.90 61.38 34.27 58.51 68.54 49.27 30.88 49.56

BV-TT 74.53 47.55 17.72 46.6 80.60 61.76 34.44 58.93 80.60 61.75 34.44 58.93 80.60 61.75 34.44 58.93 79.42 59.76 32.95 57.37

SCM [1]

(eccv’22)

DeiT-S
BV-VT – – – – 80.48 61.76 34.42 58.88 79.50 60.21 34.39 58.03 79.90 61.38 34.27 58.51 68.54 49.27 30.88 49.56

BT-TT 79.54 64.59 37.47 60.53 82.92 70.12 52.93 68.65 82.33 67.08 47.01 65.47 82.92 70.13 52.94 68.66 82.92 70.13 52.94 68.66

BT-VT – – – – 82.91 69.46 52.82 68.39 79.96 64.78 45.18 63.30 81.19 69.05 52.25 67.49 73.13 57.06 51.02 60.40

BV-TT 80.09 66.17 43.52 63.26 82.92 70.12 52.93 68.65 82.33 67.08 47.01 65.47 82.92 70.13 52.94 68.66 82.92 70.13 52.94 68.66

SAT [8]

(iccv’23)

DeiT-S
BV-VT – – – – 82.91 69.46 52.82 68.39 79.96 64.78 45.18 63.30 81.19 69.05 52.25 67.49 73.13 57.06 51.02 60.40

Table S5. Test-set MaxBoxAccV2 that is average of three threshold IoU-30, IoU-50, IoU-70 (here MaxBoxAccV2 is aerage at

three threhold) along with the it of WSOL models with different selection criteria on ILSVRC. The select column presents (i) BT and BV

indicate model selection based on hyperparameter configurations using the test set and validation set, respectively; (ii) TT and VT indicate

that the threshold τ is selected using either the test set or validation set. For model selection on the validation set, we consider the GT as

a reference, a selection based on the CL performance and the three different pseudo-bboxes generation proposed in this work: RPN, CLIP

and SS. Our results for models selected with pseudo-bboxes are comparable to those of GT.
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Figure S1. Illustration GT masks, noisy masks at various erosion levels.

we employed two histology image datasets and first sim-

ulated noisy masks by applying erosion to the GT masks.

This approach allowed us to assess the protocol’s robust-

ness against different levels of noise. Additionally for real-

istic setup, we extracted pseudo-masks from the activation

maps of a pre-trained classifier, thereby evaluating the pro-

tocol’s performance in a realistic setting. Our results indi-

cate that the evaluation protocol consistently maintains per-

formance across varying noise levels, confirming its robust-

ness in both simulated and real-world scenarios.

Datasets. We employed two additional datasets to show

the robustness of our proposed protocol; (i) GLaS dataset

is collected for the diagnosis of colon cancer and com-

prises 165 images derived from 16 Hematoxylin and Eosin

(H&E) stained slides. It includes pixel-level and image-

level annotations (benign or malignant). The dataset is di-

vided into 67 images for training, 18 for validation, and

80 for testing. Our evaluation follows the protocol estab-

lished by [6], where three fully supervised examples per

class are used for best model over LOC. (ii) CAMELYON

dataset is a patch-based benchmark extracted using Came-

lyon16 dataset, which consists of 399 whole slide images

with two classes (normal and metastatic) used for detecting

metastases in H&E-stained tissue sections of sentinel lymph

nodes from breast cancer patients. Following the extraction

protocol outlined in [6], patches of size 512×512 are anno-

tated at both image and pixel levels. This dataset comprises

a total of 48,870 images, with 24,348 for training, 8,850

for validation, and 15,664 for testing. From the validation

set, six fully supervised examples per class are randomly

selected to determine best model, as suggested by [6].

Evaluation measures. The GLaS and CAMELYON datasets

provide pixel-wise annotations (masks) rather than bboxes,

necessitating the use of pixel average precision (PxAP) [3,

6] to evaluate localization accuracy. Following the standard

WSOL pipeline, we first employ min-max normalization on

these activation maps and apply various thresholds to the

activation maps for producing localization maps.

Generation of noisy and pseudo-GT masks. The objec-

tive of this study is to evaluate the robustness of the pro-

posed model selection techniques under conditions of noisy

masks. To this end, we perturb the GT masks through ero-

sion, simulating scenarios with noisy or imprecise GT an-

notations commonly encountered in practical applications.

The noisy GT masks are generated by applying erosion with

varying filter sizes and iterations until the masks are de-

graded to a specified extent, corresponding to eleven pre-

defined noise levels, as detailed in Tab.S6 and examples of

noisy masks are illustrated in Fig.S1.

Results. Tab.S6 compares the performance of mod-

els (ResNet50) trained with pseudo-masks and generated

pseudo-masks against those trained with GT masks, demon-

strating the robustness of our evaluation protocol across

varying noise levels. The results include localization per-

formance for models using pseudo-masks generated by a

pre-trained InceptionV3 classifier, an architecture distinct

from the one used for training our models. Despite signifi-

cant increases in mask error across different noise levels on

both the GLaS and CAMELYON datasets, localization per-

formance remains relatively stable, even at the highest noise

level. Additionally, pseudo-masks generated from a differ-

ent architecture show reasonable localization accuracy, fur-

ther validating the generalizability of our evaluation proto-

col to diverse types of annotation noise, and underscoring

its robustness in practical settings.

GLaS CAMELYON

Pseudo Mask
Mask Error

1-AUC

LOC

PxAP

Mask Error

1-AUC

LOC

PxAP

GT-Mask 0.0 69.78 0.0 30.55

Perturbed GT-Mask

with erosion level:

5% 1.86 70.09 1.64 29.74

10% 4.30 70.3 4.23 38.87

20% 9.22 70.40 9.29 29.74

30% 14.61 70.02 14.26 30.55

40% 19.15 69.83 19.17 29.74

50% 24.34 70.58 24.22 29.74

60% 29.18 67.68 29.14 29.74

70% 34.16 68.38 34.11 29.74

80% 39.21 67.98 39.17 29.74

90% 44.12 68.65 44.14 29.74

CAM [12] Pseudo-Mask 46.54 66.41 28.10 29.74

Table S6. Impact of varying levels of erosion in GT masks on LOC

performance (PxAP) compared to GT-mask and pseudo-masks. It

shows that despite substantial increases in mask error (1-AUC)

across different noise levels, the LOC performance remains stable,

particularly when using pseudo-masks, highlighting the robustness

and generalizability of our evaluation protocol across different do-

mains.
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