
Diffusion-Based Particle-DETR for BEV Perception

Supplementary Material

In this document we provide additional reasoning, re-
sults, and comprehensive details supporting our method.

Appendix A. Label Ambiguity
Label ambiguity arises when the matching between pre-

dictions and targets depends on the sampling of the refer-
ences. Figure 4 showed an example where we match using
the total distance. In Figure 9 we provide also a case where
the matching is by index and label ambiguity is present. We
assume there are N targets y1, ...,yN and N predictions
b1, ...,bN , and predictions bi is matched with target yi.

BEV Features
Target 1 Noisy reference

point 1

Prediction 2

Noisy reference
point 2

BEV Features
Target 1 Noisy reference

point 2

Prediction 1

Noisy reference
point 1

Target 2

Scenario 1 Scenario 2

M
at

ch
in

g
by

 in
de

x

Target 2

Prediction 2Prediction 1

Figure 9. Label ambiguity when matching by index. Permut-
ing the initially sampled reference points causes the matching to
change which makes training unstable.

When matching by index, suppose reference ri has BEV
coordinates (x, y). The model either looks up the BEV fea-
tures at (x, y) or interpolates the queries at (x, y) and pro-
duces a prediction which is matched to yi. However, if rj is
sampled at location (x, y) the prediction will be the same,
but the target will be yj . This confuses the model because
the same features at (x, y) can have different targets.

To assess the impact that ambiguous targets may have
on the results, we study a simple toy task. We fix a single
random image I ∈ RC,H,W and construct a network with
the following forward pass:

• First, the image is passed through two convolution lay-
ers that keep the output size the same as the initial size.

• Then, we look up, i.e. interpolate, the features at a
number of reference points, provided as an additional
input.

• The resulting features are processed by two linear lay-
ers after which new 2D locations are returned.

Thus, our network takes in an image and some reference
points, and returns new 2D locations as output. The loss
function is the simple ℓ1 loss between the predictions and a

number of fixed targets. Our experiments suggest that when
we sample the input reference points randomly, and there
are only a few of them, the resulting label ambiguity is lim-
iting and prevents the network from overfitting, even on a
single image. This is the case when there are fewer or equal
random references than the number of targets. In Figure 4
we have 10 targets. With only 10 random references, the
model does not converge, even if we let it run indefinitely.

With more references than targets, the model does man-
age to converge, with the convergence speed depending on
the number of references. This is because only some pre-
dictions are used in the loss function, which makes predic-
tions more localized to where their reference points start
from. This behaviour does not exist if the references are
fixed across training iterations, in which case the model al-
ways converges to a loss of zero, irrespective of whether it
finds all targets or only some of them.

In a deterministic setup more references only speed up
training. But when they are random, it becomes necessary
to have many of them in order to converge.

Appendix B. Implementation
Here we provide additional information about the im-

plementation and the experiments. Table 3 contains the
training hyperparameters, while Algorithms 1 and 2 pro-
vide PyTorch-like pseudocodes for the training and testing
logic. Most function names are borrowed from [9].

For the implementation, our codebase is based on that of
BEVFormer [34]. We train all models for 24 epochs on the
NuScenes dataset [4] on 8 NVidia A100 GPUs, while the
evaluation is always performed on a single GPU. At both
training and test time the batch size is set to 1.

Diffusion box updates. The original DiffusionDet [9]
only works with axis-aligned boxes. For the baseline, we
re-implement and modify it to use rotated boxes. Inspired
by [66], each stage of the decoder outputs the elements
(δcx, δcy, cz, δw, δh, l, δθ, vx, vy), which are applied to the
input boxes (cx, cy, w, h, θ) to produce the updated boxes
at the current stage (c′x, c

′
y, w

′, h′, θ′) as follows:

w̄ = w cos θ + h sin θ

h̄ = w sin θ + h cos θ

c′x = w̄δcx + cx

c′y = h̄δcy + cy

w′ = exp(δw)w

h′ = exp(δh)h

θ′ = θ + δθ.

Algorithm 1: Particle-DETR Training
Inputs

F: BEV features, (C, H, W)
fixed queries: queries over which to

interpolate, (N, C)
GTs: ground-truth boxes, (N, C)
scale: the signal-to-noise ratio

Extract object centers in BEV
GT centers = GTs[..., :2]

Pad references up to a desired number
ref points = pad refs(GT centers)

Scale and apply diffusion
ref points = (2 * ref points - 1) * scale
diff time = randint(0, T)
eps = normal(mean=0, std=1)
ref points = sqrt(alpha cumprod(diff time))

* ref points + sqrt(1 -
alpha cumprod(diff time)) * eps

Interpolate the queries
queries = grid sample(fixed queries,

ref points)
keys = F
values = F

Call the decoder and compute loss
pred boxes = decoder(queries, keys, values,

ref points, diff time)
loss = set prediction loss(GTs, pred boxes)

GIoU loss. Unlike the original DiffusionDet [9], in our
implementation we do not use the GIoU loss [51] because
its implementation for rotated boxes with supported back-

Setting Value

Num. learnable object queries 900
Num. references at test time Variable
BEV size, (H,W,C) (200, 200, 256)
Optimizer AdamW
Signal-to-noise ratio 2
DDIM steps [56] 3
NMS discard threshold 0.1
Min. confidence threshold 0.02
Radial suppression threshold 0.5
Query formation Interpolation
Matching type Simple many-to-one
BEV encoder BEVFormer-Base [34]
Decoder type DeformableDETR [73]
Training epochs 24
LR schedule Cosine, 2× 10−4 → 10−6

Clip gradient 2-norm 35
Batch size 1

Table 3. Particle-DETR training hyperparameters. Additional
hyperparameters follow BEVFormer-Base [34].

Algorithm 2: Particle-DETR Inference
Inputs

F: BEV features, (C, H, W)
fixed queries: queries over which to

interpolate, (N, C)

Prepare random references
eps = normal(mean=0, std=1)
ref points = normalize(eps)
DDIM times [(T-1, T-2), ..., (0, -1)]
times = reversed(linespace(-1, T, steps))
time pairs = list(zip(times[:-1], times[1:])

Interpolate the queries
queries = grid sample(fixed queries,

ref points)
keys = F
values = F

all preds = []
for (t now, t next) in time pairs:

pred boxes, queries = decoder(queries,
keys, values, ref points,
t now)

all preds.append(pred boxes)
ref points = ddim step(ref points,

pred boxes, t now, t next)
ref points = ref renewal(ref points)

Filter predictions
preds = nms(all preds)
preds = radial suppression(preds)

propagation is non-trivial. We leave the investigation of
how similar metrics can be used as losses for future work.

SimOTA. When evaluating the simOTA matching strat-
egy [20] we remove the cost matrix masking which is
present in DiffusionDet [9]. There, additional cost is added
to those predictions whose center does not fall close enough
to or within a target box, which effectively prevents these
predictions from ever being matched. In our setup, this
masking introduced a large amount of instability. Hence,
we utilize simOTA using the raw cost matrix, where all pre-
dictions are considered as potential matchings to all targets.

Appendix C. Additional Experiments
Here we provide additional experimental results. All re-

sults and plots are from the NuScenes [4] validation dataset,
unless otherwise noted.

Deterministic and random references. Our Particle-
DETR provides rich opportunities to tweak the test-time
performance after training. Once the model is trained, one
can freely change the hyparparameters governing the infer-
ence behaviour. First, we assess how the joint training with
two sets of references, fixed and random, affects perfor-
mance. Once the model from this joint setup is trained, we
can evaluate with both sets of references or with either one
of them. Table 6 shows the performance when evaluating

DDIM steps Diff. queries mAP ↑ NDS ↑

1

300 0.4192 0.5301
500 0.4192 0.5302
700 0.4202 0.5306
900 0.4211 0.5310
1200 0.4208 0.5304
1500 0.4208 0.5302

3

300 0.4109 0.5245
500 0.4155 0.5275
700 0.4171 0.5285
900 0.4188 0.5289
1200 0.4184 0.5285
1500 0.4192 0.5290

5

300 0.4164 0.5275
500 0.4190 0.5288
700 0.4201 0.5295
900 0.4198 0.5290
1200 0.4196 0.5292
1500 0.4197 0.5293

7

300 0.4172 0.5281
500 0.4194 0.5289
700 0.4203 0.5297
900 0.4199 0.5290
1200 0.4201 0.5292
1500 0.4189 0.5287

9

300 0.4179 0.5280
500 0.4192 0.5290
700 0.4198 0.5294
900 0.4197 0.5291
1200 0.4186 0.5287
1500 0.4184 0.5284

Table 4. Joint effects of DDIM steps and diffusion object
queries when using both diffusion and fixed queries. With both
query sets, adding more random queries or DDIM steps does not
have any noticeable effect. In practice, one could use just a single
DDIM step with a variable number of queries.

with both sets. The performance is statistically-significant
and outperforms BEVFormer on all metrics.

We analyze how each reference set contributes to the
results. To do this, we look at the self-attention values
throughout the decoder layers. When evaluating with both
query sets, fixed queries from the first decoder layer spend
about 94% of their attention on other fixed queries, whereas
the diffusion queries, associated with the random refer-
ences, spend 82.5% of their attention on the fixed queries.
This imbalance is rectified in the subsequent decoder layers.
Particularly, in the last decoder layer both query sets spend
about 50% of their attention onto the other query set.

When evaluating the final model with both static and ran-
dom references we find that increasing the number of DDIM
steps or the number of random queries does not have a sig-
nificant effect, presumably because the queries correspond-
ing to the static references are more important. This is high-

DDIM steps Diff. queries mAP ↑ NDS ↑

1

300 0.3540 0.4936
500 0.3907 0.5140
700 0.4046 0.5208
900 0.4105 0.5242
1200 0.4143 0.5261
1500 0.4162 0.5273

3

300 0.3755 0.5038
500 0.3944 0.5141
700 0.4032 0.5191
900 0.4076 0.5208
1200 0.4114 0.5232
1500 0.4127 0.5242

5

300 0.3930 0.5122
500 0.4062 0.5201
700 0.4111 0.5234
900 0.4133 0.5250
1200 0.4144 0.5253
1500 0.4154 0.5263

7

300 0.3999 0.5164
500 0.4096 0.5224
700 0.4123 0.5241
900 0.4144 0.5257
1200 0.4148 0.5259
1500 0.4154 0.5265

9

300 0.4019 0.5175
500 0.4110 0.5237
700 0.4134 0.5249
900 0.4149 0.5259
1200 0.4148 0.5261
1500 0.4147 0.5258

Table 5. The joint effects of DDIM steps and diffusion object
queries when utilizing diffusion queries only. Here, we explore
whether adding more DDIM steps or more diffusion queries im-
proves performance. When using only diffusion queries, more
DDIM steps and more queries improve performance.

lighted in Table 4. The mAP and NDS results are slightly
higher than if we are using the static queries only, as in Ta-
ble 2, showing that the additional queries corresponding to

Metric BEVFormer-Base BEVFormer-Enh (ours)

NDS ↑ 0.5168 0.5287 (0.0003)
mAP ↑ 0.4154 0.4184 (0.0006)
mATE ↓ 0.6715 0.6386 (0.0009)
mASE ↓ 0.2738 0.2686 (0.0002)
mAOE ↓ 0.3691 0.3362 (0.0009)
mAVE ↓ 0.4179 0.3688 (0.0013)
mAAE ↓ 0.1981 0.1931 (0.0007)

Table 6. Performance of BEVFormer-Enh. We compare
BEVFormer-Enh, evaluated with both static and random refer-
ences, to the fully-deterministic BEVFormer. For our method, we
repeat the evaluation 10 times and report the mean values. The
standard deviations are shown in parentheses.

DDIM steps Diff. queries mAP ↑ NDS ↑

1

300 0.3540 0.4931
500 0.3899 0.5125
700 0.4042 0.5202
900 0.4108 0.5239
1200 0.4142 0.5260
1500 0.4164 0.5272

3

300 0.3746 0.5031
500 0.3952 0.5143
700 0.4034 0.5187
900 0.4080 0.5214
1200 0.4113 0.5238
1500 0.4139 0.5250

5

300 0.3940 0.5128
500 0.4070 0.5210
700 0.4124 0.5244
900 0.4146 0.5257
1200 0.4159 0.5267
1500 0.4169 0.5269

7

300 0.3999 0.5162
500 0.4104 0.5230
700 0.4133 0.5244
900 0.4154 0.5263
1200 0.4162 0.5267
1500 0.4165 0.5270

9

300 0.4031 0.5175
500 0.4120 0.5240
700 0.4142 0.5248
900 0.4156 0.5263
1200 0.4161 0.5270
1500 0.4165 0.5272

Table 7. The joint effects of DDIM steps and diffusion object
queries when utilizing radial suppression. When using only dif-
fusion queries, more DDIM steps and more queries improve per-
formance considerably.

random references do increase performance.
What happens if we use only the random references? In

that case the mAP and NDS metrics are naturally lower, be-
cause the proposed corrections should all be relative to the
current reference location, which is random. There is a clear
trade-off between the usage of additional DDIM steps or ad-
ditional references, and performance. Tables 5 and 7 show
this with and without radial suppression. We highlight that
given enough random references the Particle-DETR does
manage to beat BEVFormer on mAP. On NDS, it only takes
900 references and a single DDIM step to beat it.

Filtering. We also provide additional justification for
why filtering is needed. Since the many-to-one matching
causes multiple predictions to be stacked on top of each
other we found the usage of NMS necessary. The best
threshold is 0.1, which we also combine with confidence-
based filtering, as shown in Table 8.

Our radial suppression replaces a confident predicted

NMS threshold Conf. threshold mAP ↑ NDS ↑

0.1
0.02 0.3845 0.5135
0.05 0.3818 0.5138
None 0.3847 0.5132

0.5
0.02 0.3876 0.5129
0.05 0.3859 0.5142
None 0.3876 0.5128

None
0.02 0.2264 0.4305
0.05 0.2261 0.4314
None 0.2264 0.4303

Table 8. Filtering using NMS and confidence thresholds. We
evaluate a Particle-DETR trained with SimOTA [20] matching
without radial suppression. We set the DDIM steps to 3 and vary
the NMS threshold and the score threshold. The results show that
NMS is needed. Furthermore, using SimOTA matching does not
result in better performance than simple many-to-one matching.

box with the weighted average of the predictions within a
ball neighborhood. We tune the radius of this neighbor-
hood. For very small values no predictions are filtered. For
large values predictions from multiple different objects are
filtered. The optimal occurs around 0.5 meters, as shown in
Table 9. Data for the joint tuning of the radius and the NMS
can be found in Table 10.

Reference resampling. Following DiffusionDet [9] we
resample the search tokens between DDIM steps. We ex-
perimented with different strategies but found the basic one
in [9] to work best, as shown in Table 11. Thus, between
each DDIM step we simply resample the references corre-
sponding to less confident predictions. Alternative strate-
gies which we tested include resampling close to the con-
fident predictions, resampling without applying the DDIM
steps, or no resampling altogether.

Model characteristics. Our BEVFormer-Enh model has

Setting mAP ↑ NDS ↑

r = 0.5 m 0.4112 0.5234
r = 0.75 m 0.4143 0.5257
r = 1 m 0.4132 0.5257
r = 1.25 m 0.4102 0.5242
r = 1.5 m 0.4073 0.5226
r = 1.75 m 0.4030 0.5204
r = 2 m 0.3971 0.5172
r = 3 m 0.3697 0.5014
r = 4 m 0.3372 0.4806

Table 9. The effect of radial suppression. Here, we set the NMS
threshold to 0.5, the DDIM steps to 3, the score threshold to 0.02
and only vary the radius of the radial suppression. The results sug-
gest that a small radius is best because it keeps the averaging suffi-
ciently localized. Larger radii cause predictions corresponding to
different targets to be averaged, reducing detection accuracy.

the same number of parameters, FLOPS, and FPS as BEV-
Former [34]. The Particle-DETR is similar but can use more
compute depending on how many DDIM steps one runs.
The compute in the query interpolation depends only on the
number of reference points and not on the DDIM steps.

Setting mAP ↑ NDS ↑

NMS threshold = 0.1

r = 0.5 m 0.4188 0.5289
r = 0.75 m 0.4173 0.5283
r = 1 m 0.4138 0.5265
r = 1.25 m 0.4101 0.5246
r = 1.5 m 0.4066 0.5228

NMS threshold = 0.5

r = 0.5 m 0.4112 0.5237
r = 0.75 m 0.4130 0.5251
r = 1 m 0.4123 0.5250
r = 1.25 m 0.4096 0.5234
r = 1.5 m 0.4067 0.5222

Table 10. The joint effects of radial suppression and NMS.
Here, we set the DDIM steps to 3 and the score threshold to 0.02
and only vary the NMS threshold and the radius of the radial sup-
pression. The best results are achieved with strong NMS suppres-
sion and a relatively small radius.

Resampling strategy mAP ↑ NDS ↑

Standard normal resampling [9] 0.4156 0.5264
Resample near predictions 0.4144 0.5251
No DDIM, with resampling 0.4146 0.5252
No DDIM, no resampling 0.3959 0.5130

Table 11. Different resampling strategies. The simple strategy
of pruning the low-confident references are replacing them with
new random ones works best.

Metric Particle-DETR BEVFormer-Enh

NDS ↑ 0.5283 0.5323
mAP ↑ 0.4287 0.4326
mATE ↓ 0.6011 0.5904
mASE ↓ 0.2600 0.2595
mAOE ↓ 0.4596 0.4504
mAVE ↓ 0.4125 0.4109
mAAE ↓ 0.1275 0.1287

Table 12. Nuscenes test set metrics. For the Particle-DETR we
use 1500 queries and 1 DDIM step, with radial suppression radius
set to 0.5 and NMS threshold set to 0.1.

Appendix D. Qualitative Analysis
Here we provide additional visualizations of the predic-

tions. Figure 10 shows an example where our Particle-
DETR, using only the diffusion queries, detects very small
objects which are missed by BEVFormer. In fact, the AP
at 0.5 meters for traffic cones is above 0.34, whereas that

Figure 10. Sample predictions in BEV. Green boxes are ground-
truths, red are predicted by our Particle-DETR, and blue is pre-
dicted by BEVFormer. The right figure is a zoomed-in version of
the left one, centered around the ego-vehicle.

of BEVFormer is 0.28. Similar detection boosts can be ob-
served also for cars (+1 AP point), bicycles (+2.4), motorcy-
cles (+2.8), pedestrians (+1.8), and barriers (+9 AP points).

In general, the increased NDS results mostly from more
accurate translation, orientation, and velocity. In Figure
14 we show predictions from our Particle-DETR projected
onto the camera images. We highlight diverse driving con-
ditions including bright sunshine, rain - where raindrops
create localized blur in the images, and nighttime - where
pixel intensity noise due to the low exposure time is present.
In all these cases our method produces reasonably accurate
predictions, while being a fully generative model.

Basins of attraction. We visualize the transformation
of the starting references in Figure 13. In general, each GT
attracts the starting references around it. This gradient flow
is learned by the model and the many-to-one matching is a
necessary condition for its existence. The basins of attrac-

Figure 11. Metrics comparison. The improved NDS results from
significantly lower orientation, translation, and velocity errors.

Figure 12. Uncertainty comparison. Our Particle-DETR produces meaningful heatmaps due to its many-to-one attractive nature.

tion are well localized and separated. We considered adding
ℓ1 regularization between the predictions and the starting
references to explicitly make predictions more localized but
this was not needed as such a localization property seems to
develop naturally from the training setup.

The BEV is patched together from multiple camera
views. Logically, it is desirable to prohibit reference points
starting from one side of the ego-vehicle to be refined to the
other side because a view from one side does not provide
information about the opposite view. The attractive nature
of the Particle-DETR more or less satisfies this constraint.

The references which start in problematic BEV regions,

Figure 13. Reference dynamics. We plot the starting random
references as faint blue circles. Predicted centers with sufficient
confidence are shown in red. The starting references transformed
to those predictions are in brighter blue. The black lines show how
each reference has been modified through the six decoder stages.
Better viewed zoomed.

such as behind walls or outside of the road, are pushed to
the sides of the BEV as the features at those locations do not
correspond to any visible scene elements. The confidence
of the corresponding predictions is near zero.

Appendix E. Qualitative Evaluation on KITTI
In this section we qualitatively evaluate the generaliza-

tion capability of our Particle-DETR on different datasets.
Due to different sensor hardware, evaluating on multiple
datasets requires additional adjustments. Here we showcase
some results on KITTI demonstrating the generalization of
our method. Compared to NuScenes, KITTI has a different
sensor setup. We make the following design decisions: 1)
We repeat the single frontal image across all cameras, as if
the scene is identical from all sides of the vehicle. 2) When
evaluating, we use the CAN bus and the camera embeddings
from NuScenes. This is because the learned camera embed-
dings in BEVFormer are dataset-specific. 3) We do not use
past frames when estimating the current BEV.

All of these are expected to affect performance nega-
tively, yet they are necessary to deal with the different sen-
sor settings. Fig. 15 shows that, nonetheless, our Particle-
DETR detects the objects meaningfully. The dependency
on dataset-specific camera embeddings is a limitation of the
underlying backbone, BEVFormer, not of our proposed de-
tection part, which uses diffusion. Fig. 16 shows additional
predictions on a different scene where the model fails to de-
tect a number of vehicles.

Appendix F. Different Backbones
Due to the BEV transformation and the size of these

models, adapting the diffusion framework to other back-
bones, like BEVFusion, BEVFormerV2, or HoP currently
remains cumbersome. Therefore, remains as future work.
Here, we offer some insights from brief investigations in
this direction.

We have previously experimented with combining diffu-
sion with SparseBEV but there, because there is no explicit
BEV estimated, results are inferior. Due to the geometric

Figure 14. Particle-DETR predictions projected onto the camera images. We show three scenes, each with six cameras around the
ego-vehicle. Green boxes are ground-truths, red are predicted by our Particle-DETR. We only show predictions with confidence greater
than 0.2. The predictions are relatively accurate across diverse driving scenarios, including sunny, overcast, and night-time conditions.

Figure 15. Predictions on KITTI. We test how the Particle-DETR
trained on NuScenes generalizes to scenes in the KITTI dataset.
Best viewed zoomed.

Figure 16. Undetected objects on KITTI. This is likely due to
sensor differences between NuScenes and KITTI. The reasons are
explained in Appendix. E.

projections that happen within the detector, diffused refer-
ences close by may end up as predictions far away from
each other. Additionally, the noisy references are in BEV
coordinates but the features are obtained from individual
camera coordinates. This makes predictions spread out ra-
dially from the ego-vehicle. Thus, our diffusion framework
is best applied whenever a dense BEV is estimated, and
where nearby world coordinates correspond to nearby BEV
cells.

Appendix G. Additional Discussion
Standard DETR models are fully-deterministic. To get

an uncertainty estimate over the predictions, one usually
needs to explicitly modify the model architecture, for ex-
ample by adding additional outputs, which stand in for the
standard deviation of the box location. Here, our generative
Particle-DETR is advantageous, in that a rudimentary form
of uncertainty may be readily available.

First, we consider the baseline BEVFormer and we plot
heatmaps over the predicted box centers, computed using
kernel density estimation, as shown in Figure 12. The den-
sity (and color) at each predicted center in this plot is de-
termined mainly by how close this point is to nearby pre-
dictions. The first heatmap shows the density over the
predicted centers only, even without considering the con-
fidence of each prediction. Since BEVFormer uses one-to-
one matching, most of the predictions are quite spread apart
and few of them are attracted to the same GT box. If we
weight the predictions by their confidence, we get the third
heatmap, which is more reasonable.

Now, we apply the same procedure to our Particle-
DETR. In the second heatmap we plot the density of
the predicted centers only, before applying NMS. Due to
the many-to-one matching during training, the predictions
stack, which prevents the density from being too spread
apart and keeps it relatively focused on the true objects. If
we further consider the predicted confidence as a weight to
each point, we get the fourth heatmap where the density is
even better localized.

Thus, the dynamics of how predictions are formed them-
selves contain information. Though for object detection we
only use a few predictions, for uncertainty estimation many
can be useful. We leave it for future work to investigate how
to reason more formally about this opportunity.

