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The supplementary document is organized into the following sections. First, we discuss additional implementation de-
tails. Next, we present the results on other evaluation settings of the IJB-S dataset. Also, we present a gradient analysis of
PETALface and compare it to full fine-tuning to highlight that the proposed approach leads to stable convergence. Finally,
we provide a failure case analysis of PETALface.

A. Implementation Details
All deployment codes were implemented in PyTorch framework and executed it on eight A5000 GPUs, each equipped

with 24GB of memory.The models are trained using the AdamW optimizer and a polynomial learning rate (LR) scheduler,
with an initial learning rate of 5e−4 and a weight decay set to 0.1. We fine-tuned for 40 epochs on TinyFace [1] dataset ,
utilizing a warm-up of 2 epochs and a batch size of 8. For the BRIAR [2] dataset, we fine-tuned for 10 epochs with one
warm-up epoch, also using a batch size of 8. We utilized a low-rank decomposition of 8 for the TinyFace dataset and 32 for
the BRIAR dataset. We employed CNN-IQA [4] as our NR-IQA network to assign weightages to the LoRA modules. We
present the implementation code modules for the adaptive weight estimated and Adaptive LoRA in the below code fragments.
The weightage for the twin LoRA modules is calculated using generate_alpha. The final output is calculated as shown
in adaptive_lora. The complete PETALface training framwork for a single layer is outlined in Algorithm 1.

Algorithm 1 PETALface Training Framework for a single layer

1: Given: Pre-trained weight matrix W0 ∈ Rm×n, LoRA blocks W1 ∈ Rm×n and W2 ∈ Rm×n, Input images X = {xi |
0 ≤ i < p}, Image quality estimator ϕ(x)

2: for each dataset do
3: Sample a random l number of samples x1, x2, . . . , xl

4: Calculate the mean µ and standard deviation σ of the quality scores:

µ =
1

l

l∑
i=1

ϕ(xi), σ =

√√√√1

l

l∑
i=1

(ϕ(xi)− µ)2

5: end for
6: Set the threshold t = µ+ σ
7: for each sample xi in X do
8: qi = ϕ(xi)
9: The weightage αi is calculated using qi by:

αi =


0.5 if qi = t

0.5− (t− qi) if qi < t

0.5 + (qi − t) if qi > t

10: end for
11: We obtain image quality scores Q = {qi | 0 ≤ i < p ∋ qi = ϕ(xi),∀ 0 ≤ i < p}
12: The final output xi

out is calculated as:

xi
out = W0(xi) + αiW1(xi) + (1− αi)W2(xi)



Image quality based weight assignment

1 !pip install pyiqa
2 iqa = pyiqa.create_metric('cnniqa').cuda()
3

4 def generate_alpha(img, iqa, threshold):
5 device = img.device
6 BS, C, H, W = img.shape
7 alpha = torch.zeros((BS, 1), dtype=torch.float32, device=device)
8

9 score = iqa(img)
10 for i in range(BS):
11 if score[i] == threshold:
12 alpha[i] = 0.5
13 elif score[i] < threshold:
14 alpha[i] = 0.5 - (threshold - score[i])
15 else:
16 alpha[i] = 0.5 + (score[i] - threshold)
17 return alpha

Adaptive LoRA

1 class AdaptiveLoRA(nn.Linear):
2 def __init__(self, in_features: int, out_features: int, r: int, scale: int, bias:

bool=True) -> None:↪→

3 super().__init__(in_features, out_features, bias)
4 # LoRA 1
5 self.r_1 = r
6 self.scale_1 = scale
7 self.trainable_lora_down_1 = nn.Linear(in_features, self.r_1, bias=False)
8 self.dropout_1 = nn.Dropout(0.1)
9 self.trainable_lora_up_1 = nn.Linear(self.r_1, out_features, bias=False)

10 self.selector_1 = nn.Identity()
11 nn.init.normal_(self.trainable_lora_down_1.weight, std=1/self.r_1)
12 nn.init.zeros_(self.trainable_lora_up_1.weight)
13

14 # LoRA 2
15 self.r_2 = r
16 self.trainable_lora_down_2 = nn.Linear(in_features, self.r_2, bias=False)
17 self.dropout_2 = nn.Dropout(0.1)
18 self.trainable_lora_up_2 = nn.Linear(self.r_2, out_features, bias=False)
19 self.scale_2 = scale
20 self.selector_2 = nn.Identity()
21

22 nn.init.normal_(self.trainable_lora_down_2.weight, std=1/self.r_2)
23 nn.init.zeros_(self.trainable_lora_up_2.weight)
24

25 def forward(self, x, alpha):
26 out = F.linear(x, self.weight, self.bias)
27 lora_adjustment_1 = self.scale_1*self.dropout_1(self.trainable_lora_up_1(

self.selector_1(self.trainable_lora_down_1(x))))↪→

28 lora_adjustment_2 = self.scale_2*self.dropout_2(self.trainable_lora_up_2(
self.selector_2(self.trainable_lora_down_2(x))))↪→

29 out = out + (1 - alpha)*lora_adjustment_1 + alpha*lora_adjustment_2
30 return out
31



(a) Full fine-tuning (b) PETALface

Figure 1. Comparison of initial gradients when (a) Full fine-tuning a model and using (b) PETALface fine-tuning approach. We can see
that PETALface has small initial gradients which results in stable and gradual convergence. NOTE: The scale of the ’Gradient Values’
axis for Full fine-tuning and PETALface is different.

B. IJB-S Results

Training Dataset Arch. IJB-S (Surveillance to Single) [3] IJB-S (Surveillance to Booking) [3]

Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10

Pre-trained WBF4M [5] R50 32.01 45.72 51.25 43.82 55.75 61.28
Pre-trained WBF4M [5] Swin-B 33.23 49.85 57.63 46.22 59.40 64.93

Full-FT WBF4M [5] Swin-B 4.20 10.95 16.64 5.39 13.31 19.84
PETALface WBF4M [5] Swin-B 37.12 51.07 57.60 43.63 59.85 66.15

PETALface WBF12M [5] Swin-B 44.40 57.84 63.87 51.09 64.67 70.30

Table 1. Results on IJB-S [3] dataset in Surveillance-to-single and Surveillance-to-booking settings. The models are fine-tuned on the
BRIAR train set. We report the closed-set rank retrieval (Rank-1, Rank-5 and Rank-10). [BLUE] indicates the best results for models
trained on WebFace4M [5].

The results on the IJB-S dataset in the Surveillance-to-single and Surveillance-to-booking settings are shown in Table 1.
In the Surveillance-to-single setting, gallery images are single high-quality images. Similarly, in Surveillance-to-booking,
we have high-quality gallery images from different angles. The probes are of surveillance quality in both settings. This
setup highlights the importance of having two proxy encoders for different resolutions within the same backbone, which are
weighted based on input image quality. PETALface shows improved performance with rank-1, rank-5, and rank-10 retrieval
accuracies of 44.40, 57.84, and 63.87, respectively, in the Surveillance-to-single setting. We see similar improvements in
the Surveillance-to-booking setting for rank-5 and rank-10 accuracies, with increases of 0.45% and 1.22%. The results
demonstrate the generalization capability of the proposed fine-tuning approach. Although the model is fine-tuned on the
BRIAR dataset, the knowledge of low-resolution data gained from that can be translated to other datasets such as IJB-S.
Additionally, we observe a significant drop in performance when we fully fine-tune the model. We discussed the causes
in the main paper and want to reiterate here. Face recognition models are pre-trained on large datasets with high-resolution
images. When fine-tuning on low-resolution datasets, the model encounters a domain difference, which leads to large gradient
updates initially. This deviates the model from the original pre-trained state abruptly, leading to poor convergence. We
provide a gradient analysis in Section C to validate our claims.



C. Gradient Analysis
We analyze the gradients of the model backbone when fully fine-tuning the model versus when using PETALface to fine-

tune the model. We plot the frequency of gradient values for the first iteration of training. As shown in the Figure 1, we see
that when fully fine-tuning the model, the initial gradients are very large, and even after clipping the gradients, there will be
a large number of parameters that will change significantly. This is due to the domain difference between pre-trained and
fine-tuned data, leading to an abrupt deviation from pre-trained weights when fully fine-tuning the model. The initial value
of gradients when using the PETALface fine-tuning approach results in relatively smaller gradients initially, leading to more
stable and gradual convergence and improved performance. Moreover, the original weights remain frozen thereby preserving
all information learned during large scale training. This demonstrates the superiority of our approach in efficiently adapting
to low-resolution data.

D. Failure Case Analysis

Figure 2. Failure Case Analysis of PETALface on the BRIAR dataset. All the subjects are consented for publication.

We conducted a failure case analysis of the probe videos, as summarized in Figure 2, to examine the limitations of our
model. We found that it struggled to recognize faces that were very low in resolution and featured extreme head poses. It
also failed in cases of heavy occlusion, where faces were obscured by items like caps, masks, or sunglasses. Additionally, the
model performed poorly when faces were degraded by atmospheric turbulence, making recognition difficult. Furthermore, the
model failed with probe videos lacking frontal face views, as it could not identify individuals without clear frontal visibility
throughout the video.
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