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Our supplementary has 5 sections. Section 1 shows
additional information about datasets and training proce-
dure. Section 2 explains how spaCy is used to extract main
noun phrases from sentences and also explains how poten-
tial LLMs can be used to create diverse object descriptions
to improve dataset annotations. Section 3 contains the ad-
ditional experiments on RefCOCO(+/g), Ref-Youtube-VOS
and Ref-DAVIS17. This section also illustrates and ana-
lyzes the performance of CLIP Prior, CMD and MCC in
different situations as well as the runtime and.

1. Additional Implementation Details
1.1. Datasets

Image datasets. RefCOCO and RefCOCO+ [5] are two
of the largest image datasets used for referring image seg-
mentation. They contain 142,209 and 141,564 language
expressions describing objects in images. RefCOCO+ is
considered to be more challenging than RefCOCO, as it fo-
cuses on purely appearance-based descriptions. G-Ref [16],
or RefCOCOg, is another well-known dataset with 85,474
language expressions with more than 26,000 images. The
language used in G-Ref is more complex and casual, with
longer sentence lengths on average.

Video datasets. Ref-YouTube-VOS [17] and Ref-
DAVIS17 [6] are well-known datasets for referring video
object segmentation. Ref-YouTube-VOS contains 3978
video sequences with approximately 15000 referring ex-
pressions, while Ref-DAVIS17 consists of 90 high-quality
video sequences. These datasets are used to evaluate the
performance of algorithms that aim to identify a specific
object within a video sequence based on natural language
expressions.

1.2. Metrics

In our work, we use mIoU and Precision@X to evalu-
ate our method for image datasets, while J&F are used as
evaluation metrics for video datasets. mIoU stands for mean
Intersection over Union, which measures the average over-
lapping between the predicted segmentation masks and the

ground truth annotations. Precision@X, on the other hand,
measures the success rate of the referring process at a spe-
cific IoU threshold, and it focuses on the referring capability
of the method.

In addition, region similarity J and contour accuracy F ,
and their average J&F are commonly used evaluation met-
rics for video object segmentation (VOS) datasets. The J is
similar to the IoU score, while the F score is the boundary
similarity measure between the boundary of the prediction
and the ground truth. These two metrics together measure
the performance of the predicted object mask over the entire
video sequence. Higher J&F score indicates better RVOS
performance.

Furthermore, to quantify the ability to consistently seg-
ment various expressions for the same object and further
validate the effectiveness of our proposed Meaning Consis-
tency Constraint, we leverage an Object-centric Intersection
over Union (Oc-IoU) score, which calculates the overlap
and union area between ground truth and all segmentation
predictions of the same object. Specifically, consider the
i-th object with Ki expressions referring to that object and
the corresponding ground truth mask GTi. Let P j

i be the
model’s prediction for the j-th expression of the i-th object,
where j = 1.. Ki. The Object-centric IoU can be formu-
lated as follows:

Oc-IoU(GTi,Pi) =
GTi ∩ P1

i ∩ ... ∩ PKi
i

GTi ∪ P1
i ∪ ... ∪ PKi

i

, (1)

Oc-IoUtotal =
1

N

N∑
i=1

Oc-IoU(GTi,Pi), (2)

where N is the total number of objects/instances in the
datasets.

1.3. Training Details

Our model is optimized using AdamW [15] optimizer
with the initial learning rate of 10−5 for the visual en-
coder and 10−4 for the rest. Our model comprises a total
of nine Masked-Attention Transformer Decoder layers fol-
lowed [1]. We set the number of queries to 5 [22]. For
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broccoli front center

short guy

a doctor is working in a hospital behind a school

remote

bowl with 3 red spots

a tv underneath the clock

cow closest to us

open umbrella

chocolate frosted one at edge

giraffe in the rear look over the other giraffes backs

black cat sleeping on a red and black luggage beside a gray and white kitten

the horse on the right in the right hand picture

a man’s black tie under all the other ties he is wearing

a plate with fruit on it behind two other dishes

Figure 1. Examples of our main object extractor output. Given the expression, our algorithm will output the main noun phrase in the
sentence. Typically, the root word of the sentence is a noun phrase, which we directly output as the main noun phrase. However, if the root
word is not a noun phrase (e.g. working, wearing in the image), we instead focus on identifying its child noun. Additionally, we illustrate
the dependency parsing tree for some representative sentences on the right.

the setting of training from classification weight from Ima-
genet on Ref-Youtube-VOS dataset, we train the model for
200, 000 iteration with the learning drop at 140, 000-th iter-
ation. On Ref-DAVIS17 [6], we directly report the results
using the model trained on Ref-YouTube-VOS without fine-
tuning. In terms of coefficients in loss function, γcls = 2
and γmask = 5 are followed from Mask2Former. To main-
tain balance, we then choose γmcc = 2. We want to priori-
tize the mask loss with the highest weight because the IoU
is the primary metric.

2. Additional Details of VATEX
2.1. Main Object Extractor

We use spaCy [3] to implement our main object extrac-
tor, leveraging its optimized, fast, and effective dependency
parsing capabilities. First, spaCy extracts the root word of
the sentence, also known as the head word, which has no
dependency on other words (i.e., it has no parent word in
the dependency tree). If this root word is a noun phrase, we
directly output it as the main noun phrase of the sentence.
If the root word is not a noun (e.g., a verb), we focus on its
child noun to ensure it centers on the described object. Fig-
ure 1 shows some examples on the datasets and shows the
output of our algorithm as well as the dependency parsing
tree of some representative cases.

To handle complex sentence structures that lack a di-
rectly related noun phrase, we have implemented a roll-
back mechanism (in L27 of vatex/utils/noun phrase.py) that
returns the whole sentence, preventing information loss

and mitigating potential errors from inaccurate main noun
phrase extraction. As shown in Table 1, this rollback mech-
anism helps avoid poorly extracted nouns that could poten-
tially cause incorrect segmentation masks.

Table 1. Rollback stats on the validation split of three RIS datasets.

Dataset RefCOCO RefCOCO+ G-Ref

Num expressions 10,834 10,758 4,896
Rollback rate(%) 10.7 10.8 3.1
mIoU w/o rollback 76.23 68.45 69.01
mIoU w. rollback 78.16 70.12 69.73

2.2. Enhancing Expression Diversity in Refer-
ring Image Segmentation Datasets through
Prompting Techniques

Our method’s utilization of diverse referring expressions
for each object aligns with established best practices in text-
image dataset annotation. This approach is widely accepted
and implemented across several benchmark datasets. In sce-
narios where multiple expressions per object are unavail-
able, we have the flexibility to employ Large Language
Models (LLMs) for enhancing expression diversity. This
can be achieved either by augmenting existing expressions
or generating new ones based on object masks, a technique
successfully employed by datasets like RIS-CQ. Further-
more, we demonstrate a practical application of this ap-
proach through a sample that showcases how we can prompt



Table 2. Universality of VATEX. We conduct experiments to plug-
and-play CLIP Prior and MCC in ReLA. † means we run experi-
ment on their official code to get the mIoU score.

Method RefCOCO G-Ref

ReLA† 73.16 63.64
ReLA + CLIP Prior 74.32 +1.16 65.76 +2.12

ReLA + MCC 75.46 +1.16 65.12 +1.48

ReLA + CLIP Prior + MCC 76.33 +3.17 67.69 +4.05

ChatGPT to generate relevant expressions in Figure 2. This
generation is based on factors like an object’s position in
the image, its relative position to other objects or people,
and distinguishing attributes such as color or appearance.

Figure 2 showcases two innovative prompting tech-
niques for generating object descriptions. On the left,
we demonstrate how combining an original image with its
masked version can effectively prompt GPT-4 to generate
detailed descriptions. The right side of Figure 10 highlights
the application of the SOTA ’Set of Mark’ (SoM1 [24])
technique to enhance the capability of GPT-4(V) in acquir-
ing deeper knowledge. SoM involves creating masks for
each object in the image using SAM, each distinguished by
a unique identifier. This marked image then serves as an
input for GPT-4V, enabling it to respond to queries necessi-
tating visual grounding with greater accuracy and relevance.

3. Additional Results and Analysis
3.1. Universality of VATEX

VATEX employs CLIP Prior for Object Understanding
and Meaning Consistency Constraint for Context Under-
standing. These two modules can be easily integrated into
any DETR-based model (e.g. ReLA [11]) for RIS. We took
ReLA as a representative work and reproduced the perfor-
mance of ReLA on the validation sets of the RefCOCO and
G-Ref datasets using mIoU metrics. As illustrated in Ta-
ble 2, VATEX seamlessly integrates into current models,
achieving significant performance gains of 3.17% on Re-
fCOCO and 4.05% on G-Ref. This demonstrates the ef-
fectiveness of our approach in utilizing Vision-Aware text
features for both object understanding and context under-
standing.

3.2. Additional Comparison on RefCOCO(+/g)

3.2.1 Fair backbone comparison

We have benchmarked our model, VATEX, using the
ResNet-101 backbone, aligning it with CRIS and JMCELN
for a more equitable comparison, as illustrated in Ta-
ble 3. This adaptation demonstrates VATEX’s superior per-

1https://github.com/microsoft/SoM

Table 3. Fair Backbone Comparison between CRIS, JMCELN,
LAVT and VATEX.

Method Backbone RefCOCO
Visual Textual val testA testB

CRIS [21] ResNet-101 CLIP 70.47 73.18 66.10
JMCELN [4] ResNet-101 CLIP 74.40 77.69 70.43
VATEX (Ours) ResNet-101 CLIP 75.66 77.88 72.36

LAVT [25] Swin-B BERT 74.46 76.89 70.94
LAVT [25] Swin-B CLIP 73.15 75.24 70.02
VATEX (Ours) Swin-B CLIP 78.16 79.64 75.64

formance, achieving a 1.26% improvement on RefCOCO
val and a significant 1.93% on RefCOCO testB over the cur-
rent state-of-the-art methods.

Further, to address comparisons with LAVT, we have ex-
perimented with CLIP as the text encoder, adhering to the
official repository guidelines. This experiment revealed a
performance decline of approximately 1% when substitut-
ing BERT with CLIP as the text encoder. This finding un-
derscores the critical importance of using the CLIP Image
Encoder together with the CLIP Text Encoder to maintain
model performance. A similar trend was observed with
ReferFormer, reinforcing our conclusion. Consequently,
when compared to LAVT under the fair conditions in back-
bone, VATEX shows a substantial improvement, outper-
forming by 5.01%, 4.40%, and 5.62% on RefCOCO val,
testA, and testB, respectively. This data confirms the effec-
tiveness of our approach and the importance of consistent
backbone usage for fair and accurate performance assess-
ment.

3.2.2 External/Multiple Training dataset

We compare VATEX with other methods in RIS, which used
external training data in Table 4. SeqTR [26], RefTR [9],
and PolyFormer [12] enhance their performance on the Re-
fCOCO dataset by incorporating external datasets—Visual
Genome with 5.4M descriptions across over 33K cate-
gories, Flickr30k-entities with 158K descriptions, and the
joint dataset RefCOCO(+/g) with 368K descriptions. Their
papers indicate that using such external datasets for pre-
training can improve performance by 8-10%.

Compared to PolyFormer [12], without using external
pretraining dataset, VATEXRefCOCO demonstrates superior
performance over PolyFormer-B, while VATEXRefCOCO+
and VATEXG-Ref achieve comparable results with [12] while
using 42x and 69x smaller datasets respectively, with the
exception of the RefCOCO+ test B. The performance’s gap
on RefCOCO+ Test B, which focuses on non-human ob-
jects described purely by their appearance (e.g. ”the porce-
lain throne,” ”part of the bed occupied by a black pam-

https://github.com/microsoft/SoM


1. The horse is leaping over a jump
fence, showcasing its agility and
training in equestrian sports.

Describe the object in the left picture with the corresponding mask in the right
picture in 4 concise and straightforward ways, using the format <object +
description> at the beginning of each sentence. The descriptions can include
the object's position in the image, its relative position to other objects or
person, or attributes such as color or appearance.

2. The horse, with a rider on its back,
is captured in mid-air, demonstrating
coordination and skill.

3. The horse's glossy chestnut coat
stands out brightly against the sandy
arena and the assorted jump obstacles.

4. The horse's mane flows backward,
suggesting speed and the motion of
the jump.

(a) Prompting with Mask

1. The horse is mid-jump over a white
fence, displaying athleticism and
focus.

Describe horse 4 in 4 concise and straightforward ways, using the format
<object + description> at the beginning of each sentence. The descriptions can
include the horse's position in the image, its relative position to other objects or
people, or attributes such as color or appearance.

2. The horse has a glossy brown coat
with a large white blaze on its
forehead, contrasting with the sandy
arena.

3. The horse's 's muscular build is
evident as it arches over the obstacle
with tucked legs.

4. The horse is the central figure,
clearly separated from the colorful
background clutter.

(b) Prompting with SoM

Figure 2. Example of using GPT-4(V) with different prompting techniques to generate object description.

phlet”), could be attributed to the varied object categories
covered during the pre-training phase with extensive exter-
nal datasets.

On the otherhand, VATEXjoint adopts a different strategy.
By solely utilizing the RefCOCO(+/g) dataset, which is 16x
smaller than the datasets used by PolyFormer, VATEXjoint
with Swin-B backbone still achieves remarkable results.
Specifically, VATEXjoint outperforms PolyFormer by 4-6%
across all benchmarks, setting a new state-of-the-art result
on the RefCOCO dataset. UNINEXT [23] and HIPIE [20],
while achieving strong results, rely on extensive pretraining
and data leakage in finetuning (joint training with COCO for
segmentation while RefCOCO images and annotations are
a subset of COCO train split). In contrast, VATEX achieves
competitive performance without relying on such extensive
pretraining and removes all potential data leaking in the
training phase.

3.2.3 Comparison with SOTA foundation models

Table 5 illustrates the quantitative performance between
VATEX with generalist foundation models: Grounded-
SAM [13] [8], SEEM [28] and X-Decoder [27] in Table 5.
For Grounded-SAM, we first use Grounding DINO to ex-
tract the bounding box prediction from the text prompt, then
we feed that bounding box to SAM to obtain the final seg-
mentation mask. For X-Decoder and SEEM, we directly

use the report number on their official github2 with Focal-
L backbones. While VATEX is trained on much smaller
dataset sizes and smaller backbones, VATEXjoint still signif-
icantly outperforms Grounded-SAM with 14.34%, 15.65%,
and 16.4% improvements on RefCOCO, RefCOCO+ and
G-Ref, respectively. Compared with X-Decoder and SAM,
which are trained and finetuned on RefCOCO(+/g) datasets,
we also outperform them with approximately 2% with VA-
TEX and 7.7% with VATEXjoint.

3.3. Experimental results on Ref-YoutubeVOS and
Ref-DAVIS17

The result for Ref-Youtube-VOS dataset is shown in Ta-
ble 6. As can be seen, our method demonstrates supe-
rior performance, setting a new state-of-the-art for referring
video object segmentation on the Ref-Youtube-VOS dataset
with different backbones. In particular, our approach with
the spatial-temporal backbone (e.g., Video-Swin [14]) and
pre-trained weights from image dataset achieves the highest
J&F score of 65.4% among all other methods on the Ref-
Youtube-VOS dataset, including VLT and ReferFormer.

The results for Ref-DAVIS17 are shown in Table 7.
Similarly, our approach achieves competitive performance
compared to other state-of-the-art methods in referring
video object segmentation. Specifically, with backbones
ResNet-50, our proposed model outperforms ReferForme

2https://github.com/UX-Decoder/Segment-Everything-Everywhere-
All-At-Once/

https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/
https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/


Table 4. Quantitative results of referring image segmentation on Ref-COCO, Ref-COCO+, G-Ref datasets with other SOTA methods using
external training data. VATEX is trained with Swin-B backbone

Method External Datasets
RefCOCO RefCOCO+ G-Ref

val testA testB val testA testB val test

SeqTR [26] Visual Genome (5.4M) &
Flickr30k-entities (158K) &
RefCOCO(+/g) (368K)

71.7 73.31 69.82 63.04 66.73 58.97 64.69 65.74
RefTR [9] 74.34 76.77 70.87 66.75 70.58 59.4 66.63 67.39
PolyFormer-B [12] 75.96 77.09 73.22 70.65 74.51 64.64 69.36 69.88

UNINEXT-H [23] Object365 (30M) & 82.2 – – 72.5 – – 74.7 –
HIPIE [20] COCO + RefCOCO(+/g) 82.6 – – 73.0 – – 75.3 –

VATEXRefCOCO RefCOCO (142K) 78.16 79.64 75.64 - - - - -
VATEXRefCOCO+ RefCOCO+ (141K) - - - 70.02 74.41 62.52 - -
VATEXG-Ref G-Ref (85K) - - - - - - 69.73 70.58

VATEXjoint RefCOCO(+/g) (368K) 81.53 82.75 79.66 74.61 78.75 68.52 75.54 76.4

A bird flying in between 
two other birds

[Prompt] A photo of
a birdNaive ImplementationA tennis racket Naive Implementation [Prompt] A photo of

a tennis racket Raw heatmap Raw heatmap

A brown camel moving to 
the right fence Naive Implementation

[Prompt] A photo of
a brown camel Raw heatmap

A green motorbike being 
jumped in the forest

[Prompt] A photo of
a green motorbikeNaive Implementation Raw heatmap

Figure 3. Our heatmap from CLIP Prior. Naive Implementation means feeding the whole sentence through CLIP Model, without the Main
Object Extractor. By reducing the complexity of the text expression, it can be seen that the activation on the object of interest becomes
more accurate. Best view in zoom.

Table 5. Quantitative results of referring image segmentation on
Ref-COCO, Ref-COCO+, G-Ref validation datasets with SOTA
vision foundation models.

Method RefCOCO RefCOCO+ G-Ref

Grounded-SAM [13] [8] 67.19 58.96 59.14
X-Decoder [27] - - 67.5
SEEM [28] - - 67.8

VATEX 78.16 70.02 69.73

VATEXjoint 81.53 74.61 75.54

and achieves slightly better results than RRVOS. Moreover,
our method achieves the best performance among all meth-
ods with the Video-Swin-B backbone with a J&F score
of 65.4%, which is 3.8% higher than the closest competitor

VLT.

3.4. Heatmap of CLIP Prior

To obtain the heatmap result, from the vector of shape(
H
16 × W

16 + 1, 1
)
, we remove ”CLS” token and reshape it

into 2D heatmap of H
16 ×

W
16 . For visualization purposes, we

resize the original image to 960× 960, then pass it through
CLIP-Image Encoder, resulting in a high-quality heatmap
of size 60 × 60. Notably, we only use a default input size
of 224×224 during training. Regarding the quality of the
heatmap, Figure 3 demonstrates the comparison between
the naive implementation and our prompt-based template.
In the 3rd and 7th rows, it is evident that simplifying the
sentence and employing prompt templates can aid in dis-
tinguishing the target object from the image, resulting in
decreased localization errors.

While CLIP Prior excels at localizing objects of inter-



Table 6. Quantitative comparison with the SOTA on Ref-Youtube-
VOS.

Methods Backbone
Ref-Youtube-VOS

J&F J F

Train with Image segmentation weight from RefCOCO(+/g)

ReferFormer [22] ResNet-50 55.6 54.8 58.4
RR-VOS [10] ResNet-50 57.3 56.1 58.4
VATEX (Ours) ResNet-50 58.5 57.1 59.9

ReferFormer [22] Swin-L 62.4 60.8 64.0
VATEX (Ours) Swin-L 64.2 61.4 67.0

ReferFormer [22] Video-Swin-B 62.9 61.3 64.6
VLT [2] Video-Swin-B 63.8 61.9 65.6
VATEX (Ours) Video-Swin-B 65.4 63.3 67.5

Table 7. Quantitative comparison with the SOTAs on Ref-
DAVIS17 dataset.

Methods Backbone
Ref-DAVIS17

J&F J F

ReferFormer [22] ResNet-50 58.5 55.8 61.3
RR-VOS [10] ResNet-50 59.7 57.2 62.4
VATEX (Ours) ResNet-50 61.2 58.2 64.3

ReferFormer [22] Video-Swin-B 61.1 58.1 64.1
VLT [2] Video-Swin-B 61.6 58.9 64.3
VATEX (Ours) Video-Swin-B 65.4 62.3 68.5

est, it can struggle in complex cases where the expression
describes multiple instances within the same category and
their relative positions (e.g. bottom right of Figure 3).
In these situations, the heatmap may encompass all ob-
jects within the category rather than the specific referred
instances. However, CLIP Prior’s core purpose is to nar-
row down the relevant region, not pinpoint the exact object.
Identifying the precise instance will be handled later in the
full-text prompt by the Transformer architecture, which can
leverage additional context and relationships.

Moreover, CLIP Prior can also help the model in cases
when the referring expression contains out-of-vocabulary
objects. By transferring the knowledge from CLIP and em-
bedding the heatmap into the query initialization, the model
can obtain a good segmentation mask based on the cues
from CLIP Prior. Figure 4 shows how CLIP Prior heatmap
can help the model to localize the object in the early phase,
thus improving the model’s performance.

CLIP-based model in RIS. Adopting CLIP is a good prac-
tice taken by several previous methods, including CRIS,

Table 8. Quantitative results of referring image segmentation
on Ref-COCO, Ref-COCO+, G-Ref validation datasets on CLIP-
based and Non-CLIP model.

Method RefCOCO RefCOCO+ G-Ref

CLIP-based Model

CRIS [21] 70.47 62.27 59.87
CM-MaskSD [19] 72.18 64.47 62.67
RIS-CLIP [7] 75.68 69.16 67.62
Ours w/ CLIP Prior 78.16 70.02 69.73

Non-CLIP Model

LAVT [25] 74.46 65.81 63.34
VG-LAW [18] 75.05 66.61 65.36
Ours w/o CLIP Prior 75.43 67.38 68.12

CM-MaskSD, and RIS-CLIP. However, to effectively use
the aligned embedding from CLIP to obtain good results in
referring segmentation is an open question. For example,
although using powerful CLIP as the backbone, the SOTA
CLIP-based method RIS-CLIP [7] has a comparable per-
formance with the SOTA Non-CLIP model VG-LAW [18].
To analyze it, we take CRIS [21] as a baseline for CLIP-
based model. CRIS directly used the well-aligned embed-
ding space between text and vision for RIS. However, the
performance of this work is not good compared to others,
as there are two concerns with relying solely on CLIP for
referring image segmentation tasks:

1. Frozen CLIP Model. CLIP model, trained on object-
centric images, generates visual features focusing on
semantic class meanings rather than instance-based de-
tails (see bird example in Figure 3). This limits the
effectiveness of CLIP for instance-level tasks.

2. Fine-tuning CLIP Model. Fine-tuning the CLIP model
risks overfitting on training samples, thereby diminish-
ing its ability to generalize features to novel classes.

We found that learning from a visual backbone pre-
trained on ImageNet and only utilizing frozen CLIP as a
prior gave better performance on both instance-level seg-
mentation and open-vocabulary segmentation nature of RIS
task.

In Table 8, for a truly fair comparison, we provide our
method w/o CLIP, which achieves 75.43, 67.38, and 68.12
mIoU, and we still outperform the SOTA LAVT (74.46,
65.81, and 63.34) and VG-LAW (75.05, 66.61 and 65.36)
on RefCOCO(+/g) in the same setting.

3.5. Full ablation study

Table 9 presents an ablation study conducted on the val-
idation set of RefCOCO and Ref-Youtube-VOS, evaluat-
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Figure 4. Comparison between VATEX with state-of-the-art methods on challenging out-of-vocabulary cases in referring image segmenta-
tion. LAVT’s pixel-based approach results in imprecise masks with irrelevant pixel activation. PolyFormer, while creating instance-based
masks, struggles with hard cases like ”clownfish” or ”Jerry” due to limited recognition of unfamiliar objects. HIPIE [20] fails completely
due to its constrained pretraining on 365 categories from Objects365. Its high performance on RefCOCO may stem from overfitting and
potential data leakage when joint training with COCO. In contrast, VATEX successfully segments correct objects in these difficult vocabu-
lary situations by leveraging the CLIP Prior heatmap. This demonstrates VATEX’s superior generalization to unseen objects and complex
expressions, highlighting its effectiveness in real-world referring image segmentation tasks.

ing the mIoU (mean Intersection over Union) and J&F ,
respectively of different model configurations. The study
explores the impact of three components: CLIP Prior,
CMD (Contextual Multimodal Decoder), and MCC (Mean-
ing Consistency Constraint).

The first row represents the baseline model with none of
the studied components incorporated. The mIoU for this

configuration is 70.42% mIoU and 59.8 J&F . In rows
2 to 4, the ablation study reveals that incorporating inde-
pendently the CLIP Prior alone (row 2) and CMD (row 3)
both contribute positively to the mIoU on the RefCOCO
and J&F on Ref-YoutubeVOS validation set with an im-
provement of 1.53%, 2.76% mIoU and 1.7%, 2.1% J&F ,
whereas the introduction of the Meaning Consistency Con-



Table 9. Ablation Study on the validation set of RefCOCO (mIoU)
and Ref-Youtube-VOS (J&F).

CLIP Prior CMD MCC RefCOCO Ref-Youtube-VOS

1 - - - 70.42 +0.00 59.8 +0.0

2 ✓ - - 71.95 +1.53 61.5 +1.7

3 - ✓ - 73.18 +2.76 61.9 +2.1

4 - - ✓ 70.70 +0.30 60.2 +0.4

5 ✓ ✓ - 75.12 +4.72 63.1 +3.3

6 ✓ - ✓ 72.14 +1.74 61.3 +1.5

7 - ✓ ✓ 75.43 +5.01 63.6 +3.8

8 ✓ ✓ ✓ 78.16 +7.74 65.4 +5.6

Table 10. Ablation on the number of queries.

Number of queries 1 3 5 10 20 50

RefCOCO 77.23 77.84 78.16 78.02 78.11 77.91

straint (MCC) alone (row 4) leads to a modest increase (only
0.30% mIoU and 0.4 J&F), emphasizing the individual
significance of each component in enhancing model perfor-
mance. Although MCC alone has a modest impact, when
combined with the CMD in row 7, there is a notable im-
provement of 4.7% (mIoU of 75.1) and 3.3% (J&F of
63.1). This synergy demonstrates that while MCC alone
may not perform exceptionally, its collaboration with CMD
effectively enhances model performance, aligning with our
approach of leveraging enriched text features conditioned
by visual information for improved mutual interaction. The
final row represents the model with all components (CLIP
Prior, CMD, and MCC) combined, achieving the highest
mIoU of 78.16 (+7.74) and J&F of 65.4 (+5.6).

Table 10 presents the impact of varying query numbers
on VATEX’s performance for the RefCOCO dataset. The
results show that while a single query (N=1) achieves a re-
spectable 77.23% mIoU, increasing the number of queries
generally improves performance. The optimal performance
is achieved with 5 queries, yielding 78.16% mIoU, while
the performance slightly decreases for query numbers above
5 (78.02% for 10, 78.11% for 20, and 77.91% for 50
queries). The performance pattern is consistent with Refer-
Former [22]’s findings.

3.6. Effect of MCC on Object segmentation mask.

To validate the effectiveness of our proposed MCC mod-
ule, we propose to use a new Object-centric Intersection
over Union (Oc-IoU) score. Unlike mIoU, which averages
the overlap and union area for all segmentation predictions
within the same image, Oc-IoU measures the overlap and
union area between the ground truth and all segmentation
predictions for the same object across different expres-
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Figure 5. The architecture of Contextual Multimodal Decoder.

sions, then averages these values across all objects in the
dataset. This metric provides an evaluation of the consis-
tency and accuracy of segmentation results across various
expressions.

Table 11 provides the comparisons between our method
and the state-of-the-art method LAVT in Oc-IoU on the val-
idation set of three RIS benchmarks. As can be seen, our
method outperforms LAVT in all three datasets. Comparing
the last two rows of Table 11, we can see that the MCC helps
the model, especially CMD to enhance mutual information
between textual and visual features to further provide more
consistent and accurate segmentation. These results under-
score the compelling efficacy of our Meaning Consistency
Constraint in resolving language ambiguities, thus improv-
ing the segmentation performance.

Table 11. Performance comparison between LAVT and VATEX
on Oc-IoU metric.

Method RefCOCO RefCOCO+ G-Ref

LAVT [25] 62.51 50.79 56.01
Ours w/o MCC 66.42 54.92 59.25
Ours 68.20 57.38 61.69

3.7. Archiecture Figure of CMD

For a robust use of visual and text features in subse-
quent steps, we propose to fuse visual and text features
using a Contextual Multimodal Decoder (CMD), which is
designed to produce multi-scale text-guided visual feature
maps while enhancing contextual information from the im-
age into word-level text features in a hierarchical design as
shown in Figure 5. The process on each level of CMD
is achieved by a Bi-directional Attention Transfer(BAT),
which incorporates two cross-attention modules.

3.8. Runtime and Computational Comparison of
VATEX

We report the inference time in FPS and the number of
parameters among VATEX, PolyFormer, and LAVT in Ta-
ble 12. FPS is measured on an NVIDIA RTX 3090 with a



batch size of 1 by taking the average runtime on the entire
RefCOCO validation set.

Table 12. Comparison in inference time and parameters on the
validation set of RefCOCO dataset.

Method mIoU FPS #params #trainable params

LAVT 74.46 13 217M 217M
PolyFormer 75.96 3.5 295M 295M
VATEX(Ours) 78.16 11 251M 165M

3.9. Additional Visual Results

In Figure 6 and Figure 7, we present additional visual-
ization results for our approach. These results demonstrate
that VATEX can successfully segment referred objects in
a variety of scenarios, including complex expressions or
scenes containing multiple similar objects or rapidly chang-
ing shapes. To further illustrate our method’s capabilities,
we have also created a video demo that compares our ap-
proach to ReferFormer on Ref-Youtube-VOS. This video
demo is provided as an attachment.
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