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Appendix for: Improving Zero-Shot Object-Level Change Detection
by Incorporating Visual Correspondence

A. Upper bound accuracy of correspondence algorithm

Here, we want to estimate the correspondence component. Correspondence algorithm consists of alignment step before using
the Hungarian algorithm. By using ground-truth boxes, we can evaluate the maximum accuracy of the matching algorithm.
Experiments To assess the effectiveness of the post-processing method we employ ground-truth boxes directly rather than
utilising the change detector’s projected box output as the feature extractor’s input.
Results The findings presented in Tab. A1 upper bound indicate that our matching method demonstrates strong performance
in F1 score when applied to both the (+100) and (+99.96) algorithms. A gap persists in the availability of the (96.50)
and (91.68) datasets. The efficacy of the transformation matrix is limited in certain challenging scenarios involving or

. The dataset contains numerous artifacts, which hinder the accurate estimation of the transformation matrix.

Change (F1 Score)

Model

Ground-truth Baseline 91.68 100 96.50 99.96 99.94

Table A1. Correspondence Accuracy Upper Bound. Using ground truth boxes as input for matching algorithm

B. Features of mean pooling provide more accurate correspondence than cropped images features

The proposed approach offers flexibility in selecting methods for assigning embeddings to predicted boxes. This section
evaluates two methodologies for generating embeddings. To identify the optimal method, we conduct a comparative analysis
using our fine-tuned model. The effectiveness of each approach is assessed based on the matching score (F1).
Experiments This section analyzes the impact of two embedding assignment methods: mean-pooling and region cropping
on the correspondence score. The analysis is conducted based on the methodologies outlined in (Sec. 3.3).
Results We hypothesize that using only cropped images reduces the availability of contextual information surrounding
the object, resulting in lower correspondence accuracy. The average feature method consistently outperforms the cropping
method across all five datasets, with significant improvements observed in the and datasets. Consequently, we have
adopted the average feature technique for all subsequent experiments. Detailed results are presented in Tab. A2.

Model Average Crop Thres

Our + ResNet-50 ✓ 0.25 44.10 56.29 68.10 67.73 62.25
Our + ResNet-50 ✓ 0.25 46.19 56.94 69.52 85.33 69.53

+2.09 +0.65 +1.42 +17.60 +7.28

Table A2. Features obtained using the average method achieve higher F1 scores compared to those derived from the cropping method.
This approach consistently produces reliable results across all datasets, with particularly notable performance on the and datasets.



C. Training hyperparameters
Results We follow the training hyperparameters in (Sec. 3.4). We investigate the impact of training parameters, including
the number of epochs and learning rate, on model performance. Training for 500 epochs led to overfitting, reducing zero-shot
accuracy on the , , , and datasets (Tab. A4). Increasing the learning rate from 0.0001 to 0.0005 further degraded
accuracy (Tab. A3). Additionally, using a deeper decoder did not improve accuracy (Tab. A5).

Change (mAP Score)

Model LR CenterNet DETR Contrastive

Our 0.0005 ✓ ✓ ✓ 57.87 47.95 68.20 88.54 60.33
Our 0.0001 ✓ ✓ ✓ 71.77 57.00 81.07 90.02 78.84

Table A3. Training with different learning rate (LR). Using different learning rate in training

Change (mAP Score)

Model Epochs CenterNet DETR Contrastive

Our 500 ✓ ✓ ✓ 72.15 54.17 78.64 89.01 78.65
Our 200 ✓ ✓ ✓ 71.77 57.00 81.07 90.02 78.84

Table A4. Training with more epochs. Training the model for 500 epochs decreases accuracy in zero-shot testing on the , , , and
datasets.
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Figure A1. With the significant improvement in the and datasets, the alignment stage is a crucial component in increasing correspon-
dence accuracy. The second row’s findings demonstrate how the alignment step aids in correcting every case’s incorrect matching in the
first row. You may view the improvement’s specifics in the Tab. 6.

D. Training with a deeper decoder does not enhance model accuracy
In order to find the best change detection architecture, we added more layers to the decoder in this section.
Experiment We used [256, 128, 64] channels for each decoder layer in the prior configuration. We add two further layers
with 32 and 8 channels, respectively, in this configuration.
Results The outcomes of employing deeper decoder layers are displayed in Tab. A5. The findings demonstrate that the final
accuracy decreases with the number of decoder layers.

Change (mAP Score)

Model Epochs CenterNet DETR Contrastive

Our 200 ✓ ✓ ✓ 51.76 49.70 63.95 87.57 54.39
Our 200 ✓ ✓ ✓ 71.77 57.00 81.07 90.02 78.84

Table A5. Training with a deeper decoder does not enhance model accuracy

E. The alignment stage plays a crucial role in the success of the matching algorithm
The qualitative results Fig. A1 we present in this section demonstrate how well our alignment stage worked to enhance the
matched pairs of modifications displayed in the Tab. 6.

F. Correspondence
We present qualitative results in this part that contrast our model with CYWS model in terms of matching qualitative.

According to the qualitative results, our model outperforms CYWS model in the matching score, as indicated by the Tab. 7.
See qualitative results in Fig. A2

G. Reduce false positive predicted box in no-change case
The output from CYWS model in the default situations is shown in the first row of Fig. A3. The outcomes of our post-

processing procedure are shown in the row that follows.

H. Additional qualitative results
In this part, we present further qualitative comparison findings between our fine-tuned model and CYWS [25] model

following the use of a detection threshold of 0.25 and a post-processing technique. CYWS findings are shown in the first
row, while the results of our model are shown in the second row. For qualitative results, see Fig. A4.

I. Number of predicted box after applying detection threshold
For both the ground-truth and our refined model with different thresholds, CYWS, we display the average number of boxes

per image. You can view the detail in the Tab. A6
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Figure A2. CYWS model, as seen in (a), (b), (c), (d) and (e), is unable to identify every difference between two images. Conversely,
our model is able to identify every change in the two images. CYWS model can only identify one change for the entire region in the

example, where three changes appear at nearly the same location. Our model, on the other hand, can identify each of the three changes
independently. We hypothesise that the model learns the number of changes implicitly based on information gleaned from the contrastive
matching loss. Check Tab. 7 for quantitative results.
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Figure A3. In no-change scenarios, our post-processing approach reduces false positive predicted boxes.

Change

Avg Predicted Box Per Image

Model Thres

Ground-Truth n/a 1.93 5.85 1.80 1.10 1.0

CYWS n/a 100 100 100 100 100
Our n/a 100 100 100 100 100

CYWS 0.1 3.63 6.55 2.27 2.55 3.54
Our 0.1 3.21 7.23 2.37 2.25 2.64

CYWS 0.2 1.75 4.38 1.95 1.23 1.17
Our 0.2 1.85 4.90 1.96 1.19 1.14

CYWS 0.3 0.98 2.81 1.75 0.80 0.54
Our 0.3 1.20 3.13 1.79 0.84 0.67

CYWS 0.4 0.55 1.38 1.50 0.49 0.26
Our 0.4 0.70 1.48 1.56 0.63 0.37

CYWS 0.5 0.29 0.59 1.08 0.42 0.10
Our 0.5 0.45 0.60 1.18 0.44 0.18

Table A6. Average Predicted Box Per Image for Change with Different Thresholds. Evaluate the influence of detection threshold on
the number of predicted boxes per image in change case with CYWS model and our fineturned model
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Figure A4. When comparing our model’s change detection output to that of CYWS model, it is evident that our contrastive matching loss
enhances the model’s accuracy. Additionally, our post-processing technique can apply in many situations with multiple modifications
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Figure A5. Contrasting the results following change detection and using our post-processing both with and without the alignment step.
Evaluation of the findings in , , , , and demonstrates the significance of the alignment stage
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