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A. Hyperparemeter Selection

For the angular margin α, we searched within a range
from 0 degrees (0 radians) to 30 degrees (0.52 radians) on
UIJIndoorLoc, with a step size of 0.1 radians, to determine
the optimal angular margin. Our experimentation revealed
that an angular margin of 0.2 radians consistently yielded
stable results. Higher values of the angular margin α were
not recommended, as they led to significant increases in
model loss during training, making convergence extremely
difficult.

The weighting factors mentioned are also determined
through a grid search on UIJIndoorLoc and subsequently
applied to other datasets. This process is expedited by lever-
aging prior knowledge that the primary task of indoor lo-
calization (denoted as JMAE) should be accorded greater
emphasis, necessitating a larger range and higher amplitude
for the weighting factor λ1. Conversely, the high sensitivity
of JFI to the learning ability necessitates a much narrower
range for the weighting factor λ4. To ensure balanced im-
pacts, these weighting factors are normalized together.

The rationale behind conducting grid-search hyperpa-
rameter selection exclusively on the UJIIndoorLoc dataset
before applying the chosen hyperparameters to other
datasets lies in UJIIndoorLoc’s notable generalizability.
This dataset has a collection period spanning months
and encompasses expansive campus coverage across three
buildings, totaling 110,000 square meters, effectively cap-
turing the dynamic nature of real-world environments. Dur-
ing the grid search process, we set specific search ranges
for each hyperparameter, such as [1-5] for λ1 with a step
size of 0.2, and [0.1-1] for λ2,3,4 with a step size of 0.1.
Through this rigorous exploration of over 7 days, we iden-
tified that the set of values [3,0.5,0.5,0.5] yielded the best
performance during testing on the UJIIndoorLoc dataset.

B. Incompatibly with other knowledge-
transfer in RSS-Fingerprint-based Indoor
Localization

Compounded by the nature of radio propagation and
multipath effects, the distinctive characteristics of RSS
datasets, including variabilities in building structure, oc-
cupancy levels, and the arrangement and number of input
WiFi anchors, give rise to uncompromising discrepancies in
both appearance (input size) and content (locations). Unlike
other data types such as images or text that easily achieve
a common input size with minimal content alteration using
standard interpolation techniques, RSS fingerprints cannot
be resized as their arrangements of the disparate number of
anchors are just unknown. Even if the input sizes were re-
luctantly synchronized, the content representing specific lo-
cations would undergo significant alterations, leading to de-
viations from the true data distribution. Consequently, tra-
ditional domain adaptation approaches [1, 6], such as meta-
learning and adversarial learning, face limitations in their
applicability to such datasets.

Meta-learning approaches optimize a common meta-
learner for the target task through the learning abilities of
its versions trained on sub-tasks. However, implementing
this approach to achieve a unified meta-learner for different
RSS fingerprint datasets presents challenges. These datasets
often vary significantly in the number of anchors, with dif-
ferences of hundreds observed between datasets. Addition-
ally, standard resizing techniques cannot be applied due to
the unique characteristics of RSS fingerprints.

Adversarial domain adaptation offers a potential solution
to address differences in input size by employing separate
feature generators for different datasets. However, this ap-
proach requires substantial modifications to existing archi-
tectures to ensure the delivery of homogeneous-sized fea-
tures to domain discriminators for evaluation. Moreover,



blindly learning domain-invariant features solely through
artificial coarse-grained domain labels, especially in an
adversarial learning framework, is inadequate for captur-
ing fine-grained information particularly essential for pre-
cise localization. Additionally, this method is suscepti-
ble to instability, including notorious issues of model col-
lapse, where discriminators fail to keep track of distribution
changes in generated data.

C. Impacts of Target Relevance

The robustness of the framework is additionally eval-
uated on the target side where the target distribution is
changed with the proportion of training data. Specifically,
experiments are first carried out using only 1% and 10% of
the training data for UJIIndoorLoc, and then expanded to
10% for the other datasets for general examination. This
random partitioning is designed to simulate real-world sce-
narios for which all the models are subjected to the same
conditions, and repeated for ten rounds to achieve statistical
results. As demonstrated in Table 1, the framework exhibits
its tolerance to target constrictions and consistently empow-
ers state-of-the-art models to achieve strong performance.

D. Specific steps to the final JMI in Eq.4

Cross-Mutual Information Maximization Constraint
JMI in Eq.4 can be represented by JS Divergence DJS in
retrospect as follows.
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In addition, we make use of the mutual informa-
tion estimator Ψθ [3] to estimate the logarithm ra-
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together in Eq.1, the JS Divergence is elaborated further,
which is exactly the Mutual Information constraint JMI

presented in this work:
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E. Specific steps expanded in Eq.9

We elaborate on the expression of the transmitting matrix
Tj , which is mentioned in Eq.8 and is reduced to a simple
form in Eq.9 as follows:
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F. Power Iteration Algorithm

The proposed framework estimates the spectral norm of
the blocks in neural networks using the Power Iteration Al-
gorithm. This method is chosen for its lightweight com-
putation and continuous differentiability. Here is the pseu-
docode for the algorithm:

Algorithm 1: Numerical Estimation of Spec-
tral Norm with Tensorflow Pseudocode, called
top eigenvalue

Input: Transmitting Matrix Ti, power iteration n
Output: The Largest Eigenvalue σ(·)

1 v = tf.random.normal([Ti.shape[0], Ti.shape[1]])
2 for i = 0→ n do
3 m = tf.matmul(Ti, v)
4 µ = tf.sqrt( tf.reduce sum(tf.square(m), axis

= 1))
5 v =m/µ

6 v norm = tf.sqrt(tf.reduce sum(tf.square(v), axis
= 1))

7 σ(Ti) = tf.sqrt(µ/v norm)
8 return σ(Ti)



Table 1. The impact of the target relevance to the source datasets on Expert Distilling phase

Method
UJIIndoorLoc UTS Tampere

1% (199/19937) 10% (1993/19937) 10% (910/9108) 10% (69/697 )
MAE (m)↓ MAE (m)↓ MAE (m)↓ MAE (m) ↓

DNN [2] 160.56±0.24 18.28±0.41 10.65±5.52 25.04±14.99
DNN+++ 36.36±2.32 17.42±0.45 8.18±0.68 24.28±10.87
CNNLoc [8] 22.14±1.09 14.07±0.27 7.34±0.16 15.99±9.58
CNNLoc+++ 21.93±1.17 13.73±0.36 6.96±0.34 12.78±1.09
BayesCNN [7] 26.84±2.21 16.25±0.47 8.53±0.55 15.14±1.25
BayesCNN+++ 25.3±1.93 15.68±0.72 8.05±0.46 15.10±0.9
bAaT [4, 5] 19.56±1.09 13.06±0.26 6.79±0.22 13.30±1.03
bAaT++ (wo JFI ) 18.18±0.86 12.88±0.18 6.58±0.18 12.33±0.89

G. Pseudo code of the training pipeline
The framework executes the alignment through two pri-

mary phases. The first phase called Expert Training, in-
volves modeling the representations established by the spe-
cialized networks on their respective source datasets using
surrogate teacher networks. In the second phase, Expert
Distilling, these modeled representations are collectively
distilled into essential knowledge for alignment with rep-
resentations learned on the target dataset.



Algorithm 2: Expert Training Phase
Input: Surrogate teachers

{Gi}Ni=1 = {FG
i , EG

i }Ni=1,
Critics {Ci}Ni=1, c step, Source dataset DN

i=1,
Specialized models {Si}Ni=1 = {FS

i , ES
i , R

S
i }

N

i=1,
Epoch E, gradient weight α, loss weights {βi}3i=1

Output: Pre-trained surrogate teachers {Gi}Ni=1

1 Initialize T list
2 for i = 1→ N do
3 for epoch e = 1→ E do
4 Load Di

5 Initialize Gi, Ci, Si

6 for batch b ∈ Di do
/* First, training Critics

for c steps */
7 for k to c step do
8 Initialize Noise

9 ZF
Si
, ZE

Si
, ŶSi = Si(b)

10 ZF
Gi
, ZE

Gi
= Gi(Noise)

11 r logits = Ci(Z
E
Si
)

12 f logits = Ci(Z
E
Gi
)

13 gp = grad penalty(Ci, b, Z
E
Si
, ZE

Gi
)

14 Lc =
critic loss(r logits, f logits)

15 Ltc = Lc + α ∗ gp
16 Ci = update(Ltc, Ci)

/* Then, training
Generators and
Specialized model */

17 Initialize Noise

18 ZF
Si
, ZE

Si
, ŶSi = Si(b)

19 ZF
Gi
, ZE

Gi
= Gi(Noise)

20 ŶGi
= RS

i (Z
E
Gi
)

21 LS MAE = JMAE(ŶSi , YSi)

22 LG MAE = JMAE(ŶGi
, YSi

)

23 LSim = JSim(ZE
Si
, ZE

Gi
)

24 Ltg =
β1∗LS MAE+β2∗LG MAE+β3∗LSim

25 Gi = update(Ltg, Gi)
26 Si = update(LS MAE , Si)

27 T list.append(Gi)

28 return T list

Algorithm 3: Expert Distilling Phase
Input: Surrogate teachers

{Gi}Ni=1 = {FG
i , EG

i }Ni=1,
Target dataset Dt

Mutual Information Estimator Ψθ,
Specialized models S = {FS , ES , RS},
Epoch E, loss weights λ4

i=1

Output: Specialized models S = {FS , ES , RS}
1 Load Dt

2 Initialize Ψθ, S
3 for e = 1→ E do
4 for b ∈ Dt do
5 Initialize Noise, LMI

t , LSim
t , LFI

t

6 ZF
S , ZE

S , ŶS = S(b)

7 LS MAE = JMAE(ŶSi , YSi)
/* Computing Functional

Information in the
specialized model S for
comparison with other
surrogate teachors */

8 TMS = transmitting matrix(ZF
S , ZE

S )
9 FIS = top eigenvalue(TMS)

10 for i = 1→ N do
11 Load Gi

12 ZF
Gi
, ZE

Gi
= Gi(Noise)

/* Computing Mutual
Information Constraint

*/
13 product examples = concat(ZE

Si
[1 :

], ZE
Si
[0])

14 joint stat = Ψθ(Z
E
Si
, ZE

Gi
)

15 product stat =

Ψθ(product examples, ZE
Gi
)

16 LMI
i = JMI(joint stat, product stat)

17 LMI
t + = LMI

i

/* Computing Angular
Similarity Constraint */

18 LSim
i = JSim(ZE

Si
, ZE

Gi
)

19 LSim
t + = LSim

i

/* Computing Functional
Information Constraint

*/
20 TMGi =

transmitting matrix(ZF
Gi
, ZE

Gi
)

21 FIGi = top eigenvalue(TMGi)

22 LFI
i = JFI(FIS , F IGi

)

23 LFI
t + = LFI

i

24 Lt =

Joverall(λ
4
i=1, LS MAE , L

Sim
t , LMI

t , LFI
t )

25 S = update(Lt, S)

26 return S = {FS , ES , RS}
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