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1. Implementation

Our proposed FDS method is built using the Python lan-
guage and the PyTorch framework. We utlized four NVIDIA
A100 GPUs for all our experiments. For initializing our mod-
els, we utilize the original Stable Diffusion version 1.5 as our
initial weight [20]. The key hyperparameter configurations
employed for training these diffusion models and generating
new domains are detailed in Tables 1 and 2, respectively.

Furthermore, for classifier training, we adhere to the
methodologies and parameter settings described by Cha
et al. [4], ensuring consistency and reproducibility in our
experimental setup. The original implementation and in-
structions for reproducing our results are accessible via
https://github.com/Mehrdad-Noori/FDS.

2. Additional Ablation

Selection/Filtering. In this section, we provide visual exam-
ples to show the efficacy of our synthetic sample selection
and filtering mechanism. As mentioned in the method sec-
tion, this mechanism is intricately designed to scrutinize
the generated images through two lenses: the alignment of
the predicted class with the intended label, and the entropy
indicating the prediction’s uncertainty.

The Figures 2, 3, 4 showcase a set of images generated
from interpolations between two domains. Specifically, the
diffusion model is trained on “art”, “sketch”, and “photo”
of the PACS dataset, and the selected images, demonstrated
in the first two rows, exemplify successful blends of do-
main characteristics, embodying a balanced mixture that
enriches the training data with novel, domain-bridging ex-
amples. These images were chosen based on their ability to
meet our criteria: correct class prediction aligned with high
entropy scores. The third and fourth rows highlight the filter-
ing aspect of our mechanism, displaying images not selected
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due to class mismatches and low entropy, respectively. This
visual demonstration underlines the pivotal role of our se-
lection/filtering process in refining the synthetic dataset, en-
suring only the most challenging and domain-representative
samples are utilized for model training. Through this ap-
proach, we aim to significantly bolster the model’s capacity
to generalize across diverse visual domains.

Inter-domain Transition. In this section, we demonstrate
the model’s ability to navigate between distinct visual do-
mains, a capability enabled by adjusting the mix coefficient
«. Trained on multiple source domains, our model can gen-
erate images that blend the unique attributes of each source
domain. By varying « from 0.0 to 1.0, we enable smooth
transitions between two source domains, where o« = 0.0 and
a = 1.0 correspond to generating pure images of the first
and second domain, respectively. As an example, we illus-
trated this ability for our model trained on the PACS sources’
“art”, “sketch”, and “photo”. These domain transitions are
illustrated in the figures, showcasing transitions from “photo”
to “art” domain in Figure 5, “sketch” to “art” domain
in Figure 6, and “sketch” to “photo” domain in Figure 7,
respectively. The examples provided highlight the effective-
ness of our interpolation method in producing images that
incorporate the distinctive features of the mixed domains,
thus affirming the model’s capability to generate novel and
coherent visual content that bridges the attributes of its train-
ing domains. Note that in all of our generation experiments,
we constrained o to the range of 0.3 to 0.7 to ensure the
generated images optimally embody the characteristics of
the two mixing domains, as detailed in Table 2.

Number of Generated Domains The impact of varying
the number of generated domains on model performance
was rigorously evaluated, as summarized in Table 3. This
analysis aimed to understand how different combinations of
augmented domains influence the overall accuracy across
various dataset domains such as Art, Cartoon, Photo, and
Sketch. By integrating diverse domain combinations, identi-



Config Value
Number of GPUs 4
Learning rate le-4
Learning rate scheduler LambdaLinear
Batch size 96 (24 per GPU)
Precision FP16
Max training steps 10000
Denosing timesteps 1000
Sampler DDPM [9]
Autoencoder input size 256 x 256 x 3
Latent diffusion input size  32x32x4

Table 1. Hyperparameter Configuration for Training Diffusion
Models.

Config Value
Sampler DDIM [22]
Denosing timesteps 50

Classifier-free guidance (CFG)
Mix coefficient o
Mix timestep 7'

Randomly from [5, 6]
Randomly from [0.3, 0.7]
Randomly from [20, 45]

Generated images (PACS) 32k per class
Generated images (VLCS) 32k per class
Generated images (OfficeHome) 16k per class

Table 2. Hyperparameter Configuration for Generating New Do-
mains.

fied by IDs (as defined in Table 4), we observed improvement
gain when we add more generated domain of different com-
binations. Notably, all possible combinations of augmented
domains (3 new domains for PACS, VLCS and OfficeHome)
were utilized as the final method, leveraging the full spec-
trum of available data domains.

Stability Analysis. In this section, we demonstrate the
performance of our model across different stages of training
within two domains of the PACS dataset, depicted in Figure 1.
It is important to note that these test accuracies were not used
in the selection of the best-performing model mentioned in
earlier sections and all of our experiments follow leave-one-
out settings suggested by DomainBed. The results indicate
that our model achieves higher stability and better mean
accuracy with lower standard deviation compared to the
ERM trained on original data. Note that we cannot plot the
figures for SWAD since it is a WA of ERM and does not
have individual training curves. These results demonstrate
the robustness and stability of our model during training,
which is crucial for domain generalization algorithms.

t-SNE Visualizations. This section presents a compre-
hensive t-SNE analysis for all classes in the PACS dataset,
demonstrating the effectiveness of the FDS method in gener-
ating diverse, high-quality samples. The plots are provided
in Figure 8. Each t-SNE plot illustrates the distribution of

both original and FDS-generated samples across different
domains. The results shown here are based on our diffusion
model trained on the “Art,” “Photo,” and “Sketch” source do-
mains from the PACS dataset. To create these visualizations,
we extracted features using the CLIP vision encoder [17].
Each class in the PACS dataset is represented as distinct clus-
ters, with “x” markers indicating the location of the average
representation of each domains. These averages serve as a
reference to assess how well the FDS-generated samples are
compared with the original domains. These plots demon-
strate how FDS enables smooth transitions between domains
by interpolating between domain characteristics. This ability
to generate synthetic data across a broad spectrum of domain
representations improves the diversity of training data and
enhances the model’s generalization ability. By covering
a wider range of the domain space, FDS helps the model
better handle unseen domains, making it more robust in real-
world applications. These visualizations also suggest that the
generated domains can be viewed as new pseudo-domains,
as the FDS samples exhibit distributions distinct from their
original sources domains. This additional diversity is criti-
cal for training models capable of generalizing beyond the
source domains.

Visual Comparisons. This section visually compares the
original images from the PACS dataset with the synthetic im-
ages generated by our FDS method, highlighting the ability
of FDS to interpolate between domains. We provide exam-
ples for each pair of source domains used in training: "Art,"
"Photo," and "Sketch.". The visual comparisions are illus-
trated in Figures 9, 10, and 11. Each figure contains three
sections: the first section shows samples from one original
PACS domain, the middle section contains FDS-generated
images combining the two selected domains, and the fi-
nal section shows samples from the other original domain.
These visual comparisons show that the FDS-generated im-
ages effectively blend domain-specific features, offering new
pseudo-domain that can enrich the training set and enhance
model generalization.

3. Oracle Results

In addition to leave-one-out setting, where the validation
set is selected from the training domains, some studies also
report the results of oracle (test-domain validation set). This
can be particularly useful for understanding the potential of a
method when domain knowledge is available. In this section,
we compare our method (FDS+ERM) with the state-of-the-
art results, as shown in Table 5. It is important to note that
no Weight Averaging (WA) methods reported their oracle
results within the DomainBed framework for a fair compar-
ison. Therefore, we only train and report our ERM results
here. Our proposed method, FDS+ERM, demonstrates supe-
rior performance across multiple benchmarks. Specifically,



Accuracy (%)

Augmented

Method D(g)mains Art Cartoon Photo Sketch Avg.

SWAD (reproduced) — 89.49 +02 83.65+04 97.25+02 82.06+10 88.11+045
SWAD + FDS 1DO 91.03 +05 83.87+06 97.75+03 85.77+04 89.61 +0.30
SWAD + FDS ID1 91.01 +06 85.06+13 97.90+03 83.64+04 89.40 +0.65
SWAD + FDS 1ID2 91.46+03 85.22+08 97.88+02 84.27+03 89.71 +o040
SWAD + FDS IDO + ID1 91.52+00 85.87+07 98.03+03 85.70+10 90.28 +0.50
SWAD + FDS ID1 + ID2 91.62+08 85.57+04 98.20+03 83.88+06 89.82+053
SWAD + FDS IDO + ID2 91.52+01 84.54+05 98.28 +0.1 86.45+08 90.20 +038
SWAD + FDS IDO +ID1 +ID2  91.80 +03 86.03 0.8 98.05+02 86.11+01 90.50 +0.35

Table 3. Analysis of the impact of utilizing different numbers/combinations of generated domains on final model performance across the

PACS dataset domains (Leave-one-out accuracy). For definitions of each augmented domain (IDO, ID1, ID2), see Table 4.

Augmented

. Art Cartoon Photo Sketch
Domains
1IDO Cartoon + Photo  Art + Photo Art + Cartoon Art + Cartoon
ID1 Cartoon + Sketch  Art + Sketch Art + Sketch Art + Photo
1D2 Photo + Sketch  Photo + Sketch Cartoon + Sketch Cartoon + Photo

Table 4. Explanation of augmented domains ID definitions for each target domain of PACS dataset.
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Figure 1. Accuracy (%) across training steps: Comparison between
ERM (top row) vs. FDS (bottom row) in "Art" and "Sketch" do-
mains of PACS dataset.

it achieves an average accuracy of 81.2%, outperforming all
other methods. On the PACS dataset, FDS+ERM attains the
highest accuracy of 89.7%, with significant improvements
in the VLCS and OfficeHome datasets as well, achieving
accuracies of 82.0% and 71.8% respectively. In addition to
leave-one-out setting, these results also highlight the effec-
tiveness of our approach in enhancing the performance under
the oracle setting.

4. Detailed Results

Here we present the comprehensive tables containing all
the detailed information that was summarized in the main
paper. The leave-one-out performance (train-domain vali-
dation set) across different domains of PACS, VLCS, and

OfficeHome datasets are detailed in the tables 6, 7, and 8,
respectively. Additionally, the oracle (test-domain validation
set) accuracy results for the PACS, VLCS, and OfficeHome
benchmarks are detailed in Table 9, 10, and 11, respectively.



Method | Aug. | PACS  VLCS OfficeHome | Avg.

ERM (baseline) [7] | X 86.7 £03 77.640.3 66.4 +0.5 76.9
ERM (reproduced) X 86.6 £0.8 79.8 +0.4 68.4 403 78.3
IRM [2] X 84.5+1.1 76.9 406 63.0 £2.7 74.8
GroupDRO [21] X 87.1+0.1 77.4+05 66.2 +0.6 76.9
»» Mixup [24] v 86.8+03 78.1+03  68.0+02 77.6
E CORAL [23] X 87.1+05 77.7+02  68.4+02 77.7
g MMD [14] X 87.2+01 77.9+0.1 66.2 +0.3 77.1
- DANN [6] X 852402 79.7+05 65.3+08 76.7
-§ SagNet [16] v 86.4+04 77.6+0.1 67.5+0.2 77.2
%‘ RSC [10] v 86.2 +0.5 — 66.5 +0.6 —
SelfReg [11] v 86.7+£08 78.2+0.1 68.1 +03 77.7
Fishr [18] X 85.8+06 782402  66.0+29 76.7
CDGA [8] v 89.6+03 80.9 +0.1 68.8 +£0.3 79.3
ERM + FDS (ours)| v 89.7 +08 82.0+0.1 71.8 +0.9 81.2

Table 5. Oracle (test-domain validation set) accuracy (%) results on the PACS, VLCS, and OfficeHome benchmarks. "Aug." indicates
whether advanced augmentation or domain mixing techniques are used. The best results and second-best results are highlighted.



‘ \ Target Domains

Method \ Aug. | Art Cartoon  Photo  Sketch | Avg.
ERM (baseline) [7] X 84.7 +04 80.8+06 97.2+03 79.3410 | 85.5+02
ERM (reproduced) X 86.9+06 80.2+07 96.6+04 745429 | 84.3+1.1
IRM [2] X 84.8+13 T76.4+11 96.7+06 T76.1+10 | 83.5+08
GroupDRO [21] X 83.5+09 79.14+06 96.7+03 783+20 | 84.4+08
Mixup [24] v 86.1 05 789+08 97.6+t01 75.8+18 | 84.6+06
CORAL [23] X 88.3+02 80.0+05 97.5+03 78.8+13 | 86.2+03
., MMD [14] X 86.1 14 794+09 96.6+02 76.5+05 | 84.6+05
2  DANN [6] X 86.4+08 77.4+08 973+04 7T3.5+23 | 83.6+04
g MLDG [13] X 85.5+14 80.1+17 974+03 76.6+1.1 | 84.9 +1.1
= VREx[I2] X | 86.0+16 79.1+06 969+05 77.7+17 | 84.9+1.1
g ARM [26] X 86.8+06 76.8+05 97.4+03 79.3+12 | 85.1=+06
2 SagNet[16] v 874 +10 80.7+06 97.1+01 80.0+04 | 86.3+02
% RSC[10] v 85.4+t08 79.7+18 97.6+03 78.2+12 | 85.2+09
Mixstyle [27] v 86.8+05 79.0+14 96.6+01 78.5+23 | 85.2+03
mDSDI [3] X 87.7+04 804+07 98.1+03 784+12 | 86.2+02
SelfReg [11] v 87.9+10 79.4+14 96.8+07 7T83+12 | 85.6+04
Fishr [18] X 88.4+02 787407 97.0+01 77.8+20 | 85.5+05
DCAug [1] v 88.5+08 78.8+15 96.3+01 80.8+05 | 86.1+07
DomainDiff [15] v 849+16 829400 955+00 79.0+09 | 85.6+06
DSI [25] v 84.6 +24 81.4+16 96.8+05 82.5+10 | 86.9+14
CDGA [8] v 89.1+10 82.5+05 974+02 84.8+09 | 88.5+05
ERM + FDS (ours) v 90.7 +09 84.2+t06 97.2+01 83.0+04 | 88.8 +0.1
SWAD (baseline) [4] X 89.3+02 834106 97.3+03 825405 | 88.1+0.1
4 SWAD (reproduced) X 89.5+02 83.7+04 97.3+02 82.1+01 | 88.1+04
g SelfReg SWA [11] v 85.9+06 819404 96.8+t01 81.4+06 | 86.5+03
§ DNA [5] X 89.8+02 834404 97.7+01 82.6+02 | 88.4+0.1
<« DiWA [19] v 90.1 +06 83.3+06 98.2+01 83.4+04 | 88.8 +04
= TeachDCAug [1] v 89.6+00 81.8+05 97.7+00 84.5+02 | 88.4+02
SWAD + FDS (ours) v 91.8 +03 86.0+08 98.1+02 86.1=+01 | 90.5+03

Table 6. Leave-one-out accuracy (%) results on the PACS dataset. "Aug." indicates whether advanced augmentation or domain mixing
techniques are used. The best results and second-best results are highlighted.



‘ ‘ Target Domains
‘Aug. | Caltech101 LabelMe SUN09 VOC2007 | Avg.

Method

ERM (baseline) [7] X 97.7 +0.4 64.3+09 734+05 T4.6+13 | 77.5+04
ERM (reproduced) X 96.9 +1.4 64.1+14 711415 72.8+09 | 76.2+1.1
IRM [2] X 98.6 +0.1 64.9+09 734+06 77.3+09 | 78.5+05
GroupDRO [21] X 97.3 +03 63.4+09 69.5+08 76.7+07 | 76.7 +06
Mixup [24] v 98.3 o6 64.8+10 72.1+05 T43+08 | 77.4+06
CORAL [23] X 98.3 +0.1 66.1+12 734+03 T77.5+12 | 78.8+06
,, MMD [14] X 97.7 0.1 64.0+11  72.8+02 753433 | 77.5+09
g  DANN [6] X 99.0 +0.3 65.1+14 73.14+03 772406 | 78.6+04
£ MLDG [13] X 97.4+02 652407 71.0+14 753x10 | 772408
= VREx[I2] X 98.4 +0.3 64.4+14 T74.1+04 T762+13 | 78.3+08
T ARM[26] X 98.7+02  63.6+x07 713+12 76.7+06 | 77.6+06
B  SagNet [16] v 97.9 +04 64.5+05 714+13  T77.5+05 | 77.8 +05
;)3 RSC [10] v 97.9 +o.1 62.5+07 723+12 75.6+08 | 77.1+05
Mixstyle [27] v 98.6 +0.3 64.5+11  72.6+05 75.7+17 | 77.9 05
mDSDI [3] X 97.6 +0.1 66.4 +04 74.0+06 77.8+07 | 79.0+03
SelfReg [11] v 96.7 +04 652+12 73.1+13  76.2+07 | 77.8+09
Fishr [18] X 98.9 +0.3 64.0+05 71.5+02 76.8+07 | 77.8 +05
DCAug [1] v 98.3 +o.1 642 +04 744106 T7.5+03 | 78.6+05
CDGA [8] v 96.3 +0.7 757 +10 728 +13  73.7+13 | 79.6 +09
ERM + FDS (ours) v 98.8 +0.3 65.6 £09 75.5+09 79.3+18 | 79.8 +05
SWAD (baseline) [4] X 98.8 +0.1 63.3+03 753+05 79.2+06 | 79.1+o0.1
4 SWAD (reproduced) X 98.7 +02 63.9+03 743+11  T78.6+06 | 78.9+05
£ SelfReg SWA[11] v 974404 635403 726401 767407 | 77.5+00
ﬁ DNA [5] X 98.8 +0.1 63.6+02 T74.1+01  79.5+04 | 79.0+05
< DiWA [19] v 98.4 +o.1 63.4+01 755403 789+06 | 79.1+02
= TeachDCAug [ 1] v 98.5 +0.1 63.7+03 75.6+05 77.0+07 | 78.7=+05
SWAD + FDS (ours) v 99.5 +0.2 62.9+02 76.9+04 79.6+13 | 79.7 +05

Table 7. Leave-one-out accuracy (%) results on the VLCS dataset. "Aug." indicates whether advanced augmentation or domain mixing
techniques are used. The best results and second-best results are highlighted.



\ \ Target Domains
Method ‘Aug.‘ Art Clipart Product Real World | Avg.

ERM (baseline) [7] X 61.3+07 524403 75.8+01 76.6 +0.3 66.5 +03
ERM (reproduced) X 59.5+21 51.3+13 73.8+08 73.8 +0.2 64.6 +1.1
IRM [2] X 589423 522+16 T72.1+29 74.0 +25 64.3 422
GroupDRO [21] X 60.4 +0.7 52.7+10 75.0+07 76.0 +0.7 66.0 +0.7
Mixup [24] v/ | 624108 548106 76.9+03 78.3 402 68.1 403
CORAL [23] X 65.3+04 54.4+05 76.5=+01 78.4 +05 68.7 +0.3
., MMD [14] X 60.4 02 53.3+03 74.3+o0.1 77.4 +06 66.3 +0.1
g DANN [6] X 599+13 53.0+03 73.6+07 76.9 +05 65.9 +06
% MLDG [13] X 61.5+09 53.2+06 75.0+12 77.5 04 66.8 +0.7
= VREx[I12] X | 60.7+09 53.0+09 75.3=x0.1 76.6 +0.5 66.4 +0.6
g ARM [26] X 58.9+08 51.0+05 74.1+01 75.2 403 64.8 +0.4
2 SagNet[16] v 63.4+02 54.8404 75.8+04 78.3 +03 68.1 +0.1
% RSC [10] v 60.7 £14 514+03 74.8+11 75.1 £13 65.5 +09
Mixstyle [27] v 51.1+03 53.2+04 68.2+07 69.2 +0.6 60.4 +0.3
mDSDI [3] X 68.1 +03 52.1+04 76.0+02 80.4 +o0.2 69.2 +04
SelfReg [11] v 63.6+14 53.1+10 76.9+04 78.1 +04 67.9 +0.7
Fishr [18] X 62.4+05 544104 76.2+05 78.3 +o.1 67.8 +05
DCAug [1] v 61.8+06 55.4+06 77.1=+03 78.9 +03 68.3 +04
DomainDiff [15] v 57.6 04 492 +06 73.0+06 75.2 £09 63.7 06
CDGA [8] v 60.1 +14 542 +05 78.2+06 80.4 +o0.1 68.2 +06
ERM + FDS (ours) v 64.6 +02 57.7+01 80.2 +o0s 82.0 +0.4 71.1 +0.1
SWAD (baseline) [4] X 66.1 +04 57.7+04 78.4+o0.1 80.2 +0.2 70.6 +02
4 SWAD (reproduced) X 65.9+09 56.8+04 78.8+03 80.0 0.2 70.3 +04
é SelfReg SWA [11] v 64.9 +08 554 +06 78.4+02 78.8 +0.1 69.4 +02
é’ DNA [5] X 67.7 02 577403 78.9 +02 80.5 +0.2 71.2 0.1
< DiWA [19] v 67.3+02 579+02 79.0+02 79.9 +o.1 71.0 0.1
= TeachDCAug [1] v 66.2 +02 57.0+03 78.3+01 80.1 0.0 70.4 +o02
SWAD + FDS (ours) v 67.3 08 60.5 05 82.6 +o0.1 83.6 +0.3 73.5 +04

Table 8. Leave-one-out accuracy (%) results on the OfficeHome dataset. "Aug." indicates whether advanced augmentation or domain mixing
techniques are used. The best results and second-best results are highlighted.



\ \ Target Domains

Method \ Aug. | Art Cartoon  Photo  Sketch | Avg.
ERM (baseline) [7] X 86.5+10 81.3+06 96.2+03 82.7+1.1 | 86.7+08
ERM (reproduced) X 88.6+09 809+19 984+04 784+12 | 86.6+1.0
IRM X 84.2+09 79.7+15 959404 783421 | 84.5+12
,, GroupDRO X 87.5+05 829+06 97.1+03 8l.1+12 | 87.2+07
B Mixup v 87.5+04 81.6+07 97.4+02 80.8+09 | 86.8+06
S CORAL X | 8.6x0s 81.8x09 97.1x05 82.7x06 | 87.1x07
= MMD X 88.1+08 82.6+07 97.1+05 81.2+12 | 87.3+08
g DANN X 87.0+04 80.3+06 96.8+03 76.9+1.1 | 85.3+06
2  SagNet v 874405 812412 963408 80.7+11 | 86.4 409
S RSC v | 86007 81.8+09 968407 80.4+05 | 86.3+07
Fishr X 879 +06 80.8+05 97.9+04 81.1+08 | 86.9+06
SelfReg v 87.9+05 80.6+11 97.1+04 81.1+13 | 86.7+08
CDGA v 89.6 08 85.3+07 97.3+03 86.2+05 | 89.6+06
ERM + FDS (ours) v 91.1+03 84.9+07 973405 85.6+23 | 89.7+08

Table 9. Oracle (test-domain validation set) accuracy (%) results on the PACS dataset. "Aug." indicates whether advanced augmentation or
domain mixing techniques are used. The best results and second-best results are highlighted.

‘ ‘ Target Domains
‘Aug. | Caltech101 LabelMe SUN09 VOC2007 | Avg.

Method

ERM (baseline) [7] X 97.6 +0.3 67.9+07 709+02 74.0+06 | 77.6+05
ERM (reproduced) X 98.6 +0.2 68.6 +07 73.6+17 T78.6+12 | 79.8 +04
IRM X 97.3 02 66.7+01  71.0+23  72.8404 | 77.0+08
., GroupDRO X 97.7 +0.2 659 +02 72.8+08 734413 | 77.5+06
B Mixup v 97.8 +04 67.2+04 715402  75.7+06 | 78.1+04
S CORAL X 97.3 +02 67.5+06 71.6+06 745400 | 77.7+04
= MMD X 98.8 400  66.4+04 70805 75.6+04 | 77.9 203
g DANN X 9.0 +02 663 +12 73.4+14  80.1405 | 79.7+08
=  SagNet v 97.4 +03 66.4+04 T1.6+01  75.0+08 | 77.6+04
& RSC 4 98.0 +0.4 67.2+03 703+13  75.6x04 | 77.8 06
Fishr X 97.6 +0.7 67.3+05 T722+09 7577403 | 78.2+06
SelfReg v 98.2 +03 63.9+08 722401 755404 | 77.5+02
CDGA v 96.6 +0.7 755+19 73.6+11  77.8+10 | 80.9+12
ERM + FDS (ours) v 99.5 +0.1 68.7+03 77.4+07 82.6+01 | 82.0+o.1

Table 10. Oracle (test-domain validation set) accuracy (%) results on the VLCS dataset. "Aug." indicates whether advanced augmentation or
domain mixing techniques are used. The best results and second-best results are highlighted.



\ \ Target Domains

Method \ Aug. | Art Clipart Product Real World | Avg.
ERM (baseline) [7] X 61.7+07 53.4+03 74.1+04 76.2 0.6 66.4 +05
ERM (reproduced) X 64.0+09 53.7+11 77.1+03 78.8 +04 68.4 +03
IRM X 56.4+32 512423 7T1.7+27 72.7 27 63.0 +2.7
,, GroupDRO X 60.5+16 53.1+03 75.5+03 75.9 +0.7 66.3 +0.7
B Mixup v 63.5+02 54.6+04 76.0+03 78.0 +0.7 68.0 +04
£ CORAL X | 648+08 54109 7T65+04  T82+to4 68.4 +0.6
= MMD X 60.4+10 534405 74.9+01 76.1 +0.7 66.2 +0.6
g DANN X 60.6 £14 51.8+07 73.4+05 75.5 £09 65.3 +0.9
2  SagNet v 62.7+05 53.6+05 76.0+03 77.8 +0.1 67.5 +04
%’ RSC v | 61.7+08 53.0zx09 74.8=+0s8 76.3 +05 66.5 +08
Fishr X 63.4+08 54.2+03 76.4+03 78.5 02 68.1 +04
SelfReg v 64.2+06 53.6+07 76.7+03 77.9 +05 68.1 +03
CDGA v 61.1+11 559410 78.2+08 79.8 0.2 68.8 +0.8
ERM + FDS (ours) v 65.3+08 58.4+t08 81.2+0.2 82.4 +0.6 71.8 +0.9

Table 11. Oracle (test-domain validation set) accuracy (%) results on the OfficeHome dataset. "Aug." indicates whether advanced
augmentation or domain mixing techniques are used. The best results and second-best results are highlighted.
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Figure 2. Synthetic images from interpolating between “art” and “photo” domains of PACS, with sclected images showcasing a blend of
artistic and realistic features (top two rows) and non-selected images (bottom rows) due to class mismatches and low entropy.
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Figure 3. Interpolation between “art” and “sketch” in PACS highlights sclected images (top rows) merging textures and outlines, and
non-selected images (bottom rows) for failing selection criteria.
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Figure 4. Results from “photo” and “sketch” domain interpolation in PACS, with selected synthetic images (top rows) and non-selected due
to predictability and class misalignment (bottom rows).



a: 0.0 a: 0.1 a:0.2 a: 0.3 a: 0.4 a: 0.5 a: 0.6 a: 0.7 a: 0.8 a: 0.9 a: 1.0

Figure 5. Inter-domain Transition from “photo” to “art”. This sequence illustrates how varying a from 0.0 (purely photorealistic images) to
1.0 (purely artistic representations) enables the model to seamlessly blend photographic realism with artistic expression, demonstrating a
smooth progression from real-world imagery to stylized art.



a: 0.0 a: 0.1 a:0.2 a: 0.3 a: 0.4 a: 0.5 a: 0.6 a: 0.7 a: 0.8 a: 0.9 a: 1.0

Figure 6. Inter-domain Transition from “sketch” to “art”. Displayed here is the transformation that occurs as « is adjusted, beginning with
0.0 (pure sketches) and moving towards 1.0 (fully art-inspired images). The model effectively infuses basic sketches with complex textures
and colors, transitioning from minimalistic line art to detailed and vibrant artistic images.



a: 0.0 a: 0.1 a:0.2 a: 0.3 a: 0.4 a: 0.5 a: 0.6 a: 0.7 a: 0.8 a: 0.9 a: 1.0

Figure 7. Inter-domain Transition from “sketch” to “photo”. This figure demonstrates the capability of the model to morph sketches into
photorealistic images by altering o from 0.0 (entirely sketch-based) to 1.0 (completely photorealistic). The transition highlights the model’s
proficiency in enriching simple outlines with lifelike details and textures, bridging the gap between abstract sketches and reality.



Figure 8. t-SNE visualization of all classes from the PACS dataset, showing the distribution of original source domains (Art, Photo, Sketch)
and FDS ones.
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Figure 9. Visual comparison of original "Art" and "Photo" samples from PACS with synthetic images generated by FDS (Art + Photo). The
middle section illustrates how FDS combines visual elements from both domains, producing diverse, domain-bridging images.
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Figure 10. Visual comparison of original "Sketch" and "Art" samples from PACS with synthetic images generated by FDS (Sketch + Art).
The generated images in the middle section showcase a blend of artistic textures and sketched outlines.
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Figure 11. Visual comparison of original "Photo" and "Sketch" samples from PACS with synthetic images generated by FDS (Photo +
Sketch). The middle section demonstrates how FDS integrates the photorealistic details of the "Photo" domain with the elements of the
"Sketch" domain.
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