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1. Supplementary Material
1.1. Electrical pole detection illustration

We deploy a Fully Convolutional Network (FCN8) se-
mantic segmentation model to detect poles within the im-
age. Figure 1 illustrated the point supervision method used
to train the pole detection model. A mask with points is
compared to the predicted blobs using the 4 component loss,
to obtain a supervisory signal for training. The pole detec-
tion model is trained with the Adam optimizer at a small
learning rate of 1e-6. Standard data augmentation tech-
niques (rotations, vertical and horizontal flips, color jitter)
are applied to regularize learning.

Figure 1. Illustration of the pole detection workflow, including the
4 types of losses: Image level loss is an image classification loss
(Limage) measuring the accuracy in classifying animage as con-
taining a pole or not, a point level loss (Lpoint) for localization of
poles within the image, a split level loss (Lsplit) to ensure unique
poles are obtained and a false positive loss (Lfp) to minimize false
positive detections.

1.2. Electrical line segmentation illustration

For the line segmentation task, we deploy an asymmet-
ric DeepLabV3 model for patch-wise segmentation. We ap-
ply a scaling factor on the ground truth mask, to create a
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Figure 2. Illustration of the asymmetric line segmentation
encoder-decoder network that outputs patch-wise predictions. The
downsampling factor (sf ) determines the patch sizes for predic-
tions. Output masks are then resampled using bi-linear interpola-
tion to obtain a prediction mask the size of the input image.

patch-wise mask of line presence or absence. After obtain-
ing patch-wise predictions, the predictions are resampled
using bi-linear interpolation to obtain a prediction mask the
size of the input image. Figure 2 illustrates the line segmen-
tation workflow used for training. The line segmentation
model is trained with the Adam optimizer at a small learn-
ing rate of 1e-5. Standard data augmentation techniques
(rotations, vertical and horizontal flips, color jitter) are also
applied to regularize learning.

1.3. Sensitivity to scaling factor.

To perform patch-wise line segmentation, we experiment
with three scaling factors: 1, 4 and 8. sf of 1 leaves the
ground truth label mask size unchanged, a sf of 4 reduces
the ground truth label raster to a quarter of its original size,
while a sf of 8 reduces the ground truth label raster to an
eighth of its original size. We observe that, an sf of 4 yields
the best localization as measured by mIOU and detection as
measured by the F1-score as shown in Table 1.

1.4. Selecting a distance threshold (th).

To understand the impact of the distance threshold (th)
when evaluating the pole detection model in the Turkana In-
tergrated Settlement, we randomly sample 100 poles from
the test set and measure the shadow lengths cast by the
poles. Figure 3 shows the distribution of pole shadow
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Figure 3. Distribution of pole shadow lengths, given a random
samples of 100 poles from the test area.

lengths for the 100 sampled poles. We observe that less
than 30 % of poles cast a shadow less than 5 meters while
90% cast a shadow of 10 meters or less. This observation
is important because the model outputs blobs as predictions
for pole locations. The centroids of the blob are then used as
predicted pole locations. For poles with longer shadows and
by consequence larger blobs, their centroids occur further
away from the ground truth pole point location. Thus a cor-
rectly detected pole, might be classified as a false positive
if the chosen distance threshold is too small. Understand-
ing the distribution of pole shadows is also of importance so
that unreasonably large distance thresholds are not selected.
At very large thresholds, almost all poles would be reported
as detected but these detections could be faulty as the pre-
dicted poles can occur very far from the ground truth point.
By measuring the distribution of lengths cast by pole shad-
ows in the dataset, a reasonable threshold can be selected to
evaluate how well the model is performing and drive further
model improvements. It is worth noting that electrical poles
do not typically occur in dense clusters as they are almost

Table 1. Line segmentation model performance in Kalobeyei
Camp as a function of the scaling factor (sf ). The sf of 4 pro-
duces the best localization and detection results as measured by
the mIOU and F1-scores. At this sf, the original label mask is re-
duced to 1/4 of its size, and the model classifies every 4x4 patch
within the image as containing a line or not.

mIOU F1-score
sf K1 K2 K3 K1 K2 K3
1 0.68 0.61 0.68 0.82 0.76 0.81
4 0.70 0.63 0.67 0.82 0.77 0.81
8 0.69 0.62 0.68 0.82 0.77 0.81

evenly spaced out to support lines over a geographic area.
This constraint in the physical placement of electrical poles
reduces the likelihood of mismatches between predictions
to ground truth pole, especially at a distance threshold less
than 10m.


