
A. Appendix

A.1. Further Discussion on Related Work

Machine learning does not prescribe what features a
model learns, further models may not learn the same fea-
tures as a human, e.g., models may use texture over shape
to classify objects unlike humans [21]. Spurious corre-

lations highlight the importance of understanding what

features are learned and how they are represented. Her-
mann et Lampinen [29] study the relevant question of what
shapes feature representations, including an analysis of cor-
related features, with experiments on a synthetic “trifea-
ture” dataset of a similar type to our pilot experimental data.
By measuring the linear decodability of visual features from
intermediate model layers, they find that when multiple fea-
tures redundantly predict class labels, models preferentially
represent the feature that is most linearly decodable from
the untrained model, hypothesising that the “decodability
of features from an untrained model reflects the model’s in-
ductive biases, and might predict the extent to which a fea-
ture would be preserved after training the model on a differ-
ent task.” There are some theoretical works also backing up
their empirical findings [74, 75, 78].

The authors further find that across training, task-
relevant features are enhanced, and irrelevant features for
the task are partially suppressed. Their findings suggest
that the features models represent depend on both the pre-
dictivity of features and their easiness of learning. This
may explain why more reliable features can be suppressed
by a less reliable, but easier-to-learn one. With regards to
harmful spurious correlations [60], this would indicate that
a model learns to rely on a less predictive feature since its
easiness-to-learn dominates over its lack of reliability for
prediction. Methods like MID, or other methods that fine-
tune a model relate to these findings as they aim to make
the model less sensitive to spurious features. They make the
easier-to-learn, spurious attribute less predictive by training
the model on examples that break the spurious trend. They
may not (in particular, retraining only the final layer will
not) reduce the linear decodability of the spurious attribute,
but will adjust the feature contributions to the model output
prediction.

Kirichenko et al. [39] advocate for simple last layer re-
training, demonstrating that it can match or outperform
state-of-the-art approaches on spurious correlation bench-
marks, with far less expense. They further show that they
could reduce reliance on background and texture informa-
tion on large ImageNet-trained models using this technique.
Izmailov et al. [36] study feature learning in the setting of
spurious correlations. They show features learned by sim-
ple ERM are highly competitive, and that retraining the last
layer beats specialised group robustness methods for reduc-
ing the effect of spurious correlations. Following this work,

Latent L n(L) Values

Shapes 3 S, O, H
Scales 6 0.5 - 1
Orientations 40 0 - 2
Positions in X 32 0 - 1
Positions in Y 32 0 - 1

Table 2. DSprites space of latent dimension values.

in our experiments, we retrained only the last layer. How-
ever, other methods of fine-tuning are also possible. Final
layer retraining alters the weights of how features contribute
to the output classification in enforcing the utilisation of se-
mantically consistent features. As mentioned above, this
will not alter the decodability of relevant or irrelevant fea-
tures. However, further layer retraining may or may not
suppress the spurious and now less predictive features [29]
or induce a kind of catastrophic forgetting [53, 92].

The work of Hendrycks and Gimpel [27] is also relevant
to discuss in relation to our work. The authors observe that
accurately classified examples usually have a greater max-
imum softmax probability than erroneously classified and
out-of-distribution (OOD) examples. They use this finding
to develop a simple baseline that utilises probabilities from
the model’s softmax distribution for detecting if an exam-
ple is misclassified or out-of-distribution. Our work has a
different underlying motivation to this work, as we exam-
ine logits (model outputs before any activation function is
applied), and frame our work as a flavour of interpretability
since we are motivated to comprehend representations with
a richer level of detail than previous works examining max-
imally activating examples. However, our experiments on
utilising the mid-range activations on spurious benchmark
problems have a similar focus to the goal of Hendrycks and
Gimpel as we locate low spurious images (an aspect OOD),
and counterexamples to the spurious trend. A further over-
lap with this work is where we found that mid-level acti-
vations were useful for finding misclassified examples, as
these are examples where the model has a near zero out-
put logit value due to exhibiting uncertainty on the exam-
ple or memorisation of the label. An interesting future re-
search direction could be to measure how well mid-level
activations can locate out-of-distribution data in these same
benchmarks used by Hendrycks and Gimpel.

A.2. Synthetic Data Training and Experiments

The available combinations of the DSprites latent dimen-
sions to sample values are described in Tab. 2.

DSpritesUnfair Details: The DSprites data consists of 3
shapes (the attribute to be classified), which are homoge-
neously dispersed in data that is randomly sampled, includ-



ing by x position. Therefore, we would expect each shape
to be located in the left, middle, and right segments of the
images one-third of the time. For each level of bias, b, we
replace that proportion of the data with data containing only
squares to the left, ovals in the middle and hearts on the
right, the remaining 1-b proportion of the data is randomly
sampled. For example, if 10% of the data is intentionally
biased, the remaining 90% of the data is the original fair
data, so the shortcut holds in 40% instead of 33.33% of the
data.

Training Details: All models were trained with the Py-
torch library [67] with a learning rate of 1e-3, Adam opti-
miser and a batch size 1000. The loss is the typical cross-
entropy loss. DSprites experiments were performed locally.

Further Demonstrations of Representational Similari-

ties: In Fig. 5, we plot the representation similarities for
encoders trained on varying levels of biased training data.
Cosine similarity is used as the measure of similarity. For a
test sample of 1000 images, the similarity of the encoder’s
representation for each pair of images is calculated. The
images are then sorted by (a) shape, and (b) x position to
reveal patterns related to those attributes in the representa-
tional space. We see that for an encoder trained without bias
(level 0.0), the encoder representations for elements of each
shape are more similar to other images containing that same
shape (high similarity along the diagonals) and the similar-
ities ordered by position show no pattern. For bias level 0.5
(the best-performing model on the test set), the similarity
pattern sorted by shape is even clearer. However, some pat-
tern is also present for pairs ordered by position. For bias
level 0.7 (where the model’s performance on a fair test set
is compromised), the pattern in the similarity of represen-
tations sorted by shape is not as clean. The pattern in the
similarities sorted by x position shows more structure. By
bias level 0.9 (here, the model’s test accuracy is near ran-
dom as the model relies mostly on the position shortcut),
the similarities sorted by shape lack the clear pattern shown
for lower bias levels, and a clear pattern can be seen when
ordering images by x position. Fig. 6 shows sample images
in the maximal and middle logit range for the class shape
“square” for a model trained on data containing a harmful
bias level of 0.9.

A.3. Harmful and Seemingly “Helpful" Spurious

Correlations

Murali et al. [60] found that when the spurious feature is
easier to learn than the core (which they term a harmful spu-
rious feature), the model learns to leverage them and that in
most cases, the core-only test accuracy drops to nearly ran-
dom chance. However, results on one dataset (KMNIST

with a patch shortcut) showed when a harmful spurious fea-
ture was removed in testing, the accuracy dropped, although
it remained considerably higher than random accuracy, and
the model performance had a wider variance across random
seeds. In our setting, we found that some relatively small
amounts of bias in the train set positively impacted model
performance on a fair test set. We conjecture that this could
be caused by the spurious signal interacting with the loss
landscape in a way that makes it easier to find a lower loss.
The easier-to-learn spurious pattern provides further signal
for the model to find a better local optimum with gradient
descent. The bias becomes a “harmful” spurious correlation
(as defined by Murali et al. [60]) when the spurious signal
overpowers the core features.

A.4. Further details on Spurious Correlation

Datasets and Training

Tab. 3 gives specific details on the compositions of the
spurious benchmark datasets used for our experiments. As
captured by the “Group Counts” column, the datasets con-
tain large group imbalances. Further, by conditioning on
spurious attribute value, we see that the group imbalances
are highly correlated with the labels. In the Waterbirds
dataset, it is unlikely to find land birds on a water back-
ground. In the CelebA dataset, there are not many images
of blonde celebrities who are male.

Following other works, for CelebA we finetuned the Im-
ageNet pretrained model with stochastic gradient descent
using an initial learning rate of 1e-3, a cosine learning rate
scheduler, and a weight decay of 1e-4 for 50 epochs. For
Waterbirds, we set an initial learning rate to 3e-3 and trained
for 100 epochs, all else the same.

A.5. MID Filtering

For CelebA, we took 3,839 points out of 162,770 (2,000
logit intercept points for each class, meaning 3,839 unique
points as there were overlapping points). Fig. 7 shows the
logits sorted in descending order for the non-blonde class.
Of these, the ERM model misclassified 1,137 points (out of
a total of 2063 misclassified points. That is, the selected
data contains 55.1% of all the ERM model’s errors). Of
the 3,839 logit intercept points, many of these points may
appear ambiguous with respect to the label, or may have a
wrong label. To handle mislabels and ambiguously labelled
data, we apply BLIP in a VQA setting by asking “Is this
person blonde?” for each image to obtain a “yes” or “no”
answer. Fig. 8 shows a sample of randomly selected images
with disputed labels. The first four images on the left are
clear mislabels. The two rightmost images contain celebri-
ties with a debatable hair colour. In both scenarios, it is ap-
parent why the model would be confused by such images.
In total, BLIP disputed the label for 1679 points, leaving
2160 points remaining after step 2 in MID.



(a)

(b)

Figure 5. Representational similarity matrices plotted for encoders trained with varying levels of bias (below each image). The order of
encoder embeddings is sorted by (a) shape, and (b) the x position of the shape.

Dataset Labels Group Counts Class Totals P(Y = y|S = s)

→ y/s ↑ Water Land 4795 Water Land

Waterbirds Water 3498 (73.0%) 184 (3.8%) 3682 (76.8%) 98.4% 14.8%
Land 56 (1.2%) 1057 (22.0%) 1113 (23.2%) 1.6% 85.2%

Female Male 162770 Female Male

CelebA Non-blonde 71629 (44.0%) 66874 (41.1%) 138503 (85.1%) 75.8% 98.0%
Blonde 22880 (14.1%) 1387 (0.8%) 24267 (14.9%) 24.2% 2.0%

Table 3. Label and group details for worst-group accuracy benchmarks. These datasets have both label and group imbalances. The final
columns calculate how the class probabilities shift when conditioning on the spurious attribute s. The datasets exhibit a class imbalance
which contributes to a large group imbalance. For example, less than 15% of the dataset has the label “blonde”. A spurious correlation is
created as 24% of females are blonde while only 2% of males are blonde.

(a) (b)

Figure 6. (a) Maximally activating examples for the neuron corre-
sponding to the square class for training bias level 0.9. (b) Mid-
level activating images in the same setting.

A.6. MID Clusters and Retraining Details

K-means cluster analysis: K-means was applied using
the scikit learn package [68] starting with k = 2 as de-
scribed in Sec. 5.1 with default settings besides a fixed ran-
dom seed 0, 5 initial centroids, and a maximum number
of iterations set to 1000. A manual inspection of 50 im-
ages from each cluster was allowed to establish if the clus-
ters consisted of data that was reasonable for the model to
exhibit uncertainty about. Fig. 9 shows examples of im-
ages from each of the three clusters. Cluster 1 appears
to consist of unusual images, such as strange lighting, un-
usual artefacts and hair colours that the model is likely not



Figure 7. Logits in descending order for the class non-blonde (in
blue), and blonde logits (in orange).

too familiar with. For these reasons, it is not unreason-
able that the model might struggle with classifying these
images. Cluster 2 contains many blonde males, but also
some blonde females. Studying the pattern led us to sum-
marise this cluster by containing masculine features such as
a larger chin (male or female), short hair, or tightly tied back
hair. Since the images inspected were all clearly blonde,
the model’s poor performance on this cluster is less under-
standable. Further, as discussed above, an apparent pattern
is visible. Therefore, we marked this cluster for retrain-
ing. Cluster 3 is composed of images of female celebri-
ties with hair colour that is between blonde and brunette,
or auburn coloured hair. We believe this cluster reflects an
understandable level of uncertainty expressed in the log-
its. Fig. 10 shows the group compositions of the cluster,
which our method does not use, but we include for demon-
stration purposes. The groups represent the combination of
label and spurious attribute. Group 1 is the combination
of non-blonde and female attributes, group 2 non-blonde
males, group 3 blonde females, and group 4 is the minor-
ity group consisting of blonde males. As discussed above,
cluster 2 contains mainly images of blonde celebrities. The
corresponding middle chart in Fig. 10 shows that this cluster
contains many blonde males and blonde females. We note
that we began clustering with 2 clusters and found good re-
sults for 3 clusters. However, we repeated analysis for 4
clusters to check if a pattern emerged. We found similar re-
sults, with the first cluster described above roughly splitting
in two.

Selecting data for retraining and manual inspection:

The data used for retraining is simply taken from the clus-
ters where poor model performance on cluster labels is
deemed inappropriate (e.g., it is unacceptable to perform
poorly in classifying the hair colour of people with mascu-
line type features) and not clusters where poor performance
is deemed reasonable (e.g., a cluster containing celebrities
with in between hair colours). Regarding manual inspec-
tion and automating our method, the cluster labelling com-
ponent can be done without human input using an appro-
priate VLM if available for the application. Automating the
inspection of what is unusual about the clusters or if poor
performance is acceptable is left to future work. This is
because the method allows for the spurious correlation to
not be preconceived (however, if the spurious correlation is
preconceived, a VLM can again do this step), and reasoning
about whether poor performance on a cluster is appropriate
or not requires common sense, and domain knowledge in
some cases.

We suggest that for many applications an LLM may be
able to assist with this component of the method (e.g., for
the cluster of dark blonde and light brown-haired females,
one could ask an LLM if it is reasonable for a model to
have uncertainty classifying this type of hair as blonde or
non-blonde?). However, a full study of the applicability
of LLMs to automate this type of common sense human
analysis should be undertaken before trusting a model with
this task for many applications. Not requiring preconceived
ideas about spurious attributes is a key feature of our work
which distinguishes it from methods requiring group label
information, which implicitly assume a preconceived spu-
rious attribute. In many cases, we may not know which
concepts are entangled with each other. For now, having a
human in the loop to some extent may be wise to avoid fail-
ures for many applications where the spurious correlation
is not preconceived as is allowed for in our MID experi-
ments. Fortunately, given that MID significantly reduces
the amount of data to be inspected, the human workload
should be greatly reduced with inspection required for just
a few images from each cluster.

MID retraining: We train the regularisation parameter
for the logistic regression reweighting on one-half of the
data from poorly performing selected clusters (Step 4). We
test for values in the range {1.0, 0.7, 0.3, 0.1, 0.07, 0.03,
0.01} and find a strength of 1.0 is the best-performing value
for both CelebA and Waterbirds. We then select this opti-
mal value that leads to the best accuracy and train on the
available validation data with additional randomly selected
training set data so that the model does not “forget” the ma-
jority groups leading to a poorer overall accuracy in favour
of a higher worst-group accuracy.



Figure 8. Middle logit images with y labels on top disputed by BLIP labels shown below each image.

Figure 9. Group composition of k-means clusters for k = 3 on the filtered CelebA dataset.

A.7. MID Ablation Experiments

In this section, we demonstrate the importance of tak-
ing only mid-level logits through the absence of Step 2 in
our method, MID, described in Sec. 5.1 for the CelebA
dataset. We investigate the need to narrow our focus to the
middle logit intercept data, we repeat k-means clustering
(step 3 of our method) without the preceding filtering step
(Step 2). Fig. 11 shows the resulting cluster compositions
by label and spurious attribute. The pattern that emerges

from analysing the clusters is roughly group 1 contains non-
blonde celebrities with various backgrounds, group 2 con-
sists of blonde and light-haired non-blondes, group 3 con-
tains brunette celebrities with long hair, and group 4 con-
tains non-blonde celebrities with short hairstyles. None of
the clusters were found to reveal a spurious pattern in the
data. This finding is in line with Sohoni et al. [80]. We
further investigate the need to select specific clusters that
the model should perform well on, rather than just a ran-



Figure 10. Group composition of k-means clustering on the fil-
tered CelebA dataset.

dom cluster. We find that applying MID to random clusters
does not necessarily improve model performance, and can
negatively impact model performance in some cases. E.g.,
retraining the model on the cluster of photos of celebrities
with hair that is between blonde and brown, does not help
with performance and certainly not the WGA. This cluster
reflects a reasonable model uncertainty as a human could
easily spot that classifying these samples is difficult and that
this cluster may also reflect some label inconsistency.

Figure 11. Group composition of k-means clustering on the entire
CelebA dataset.


