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Figure 1. Web user interface for our recording. Top left:
Instruction of recording, Top right: Step description with the
focus on the current step, Bottom left: Reference video from
YouCook?2 [12], Bottom right: Necessary ingredients extracted
from captions.

1. Dataset Details

Video recording: We ask 44 participants to record cook-
ing activities in their own home kitchens using a head-
mounted GoPro camera. The cooking recipes are adopted
from YouCook2 (YC2) [12] captions with 2,000 recipes
consisting of 82 classes of recipes (e.g., “BLT” is a class
and multiple recipes belong to the class). Each participant
chooses five recipes at will so that selected classes do not
overlap and then prepares the meal by following the step
descriptions written in the recipe. In total, we collect 226
videos totaling 43 hours. We also received approval for
this activity data collection from an Institutional Review
Board and obtained consent from participants who joined
this recording.

Fig. 1 indicates our web application used for our video
recording, displaying the instruction of video collection,
step descriptions, reference videos from YouCook2, and
necessary ingredients extracted from annotated captions.
This Web interface helps participants prepare ingredients

Figure 2. Recipe distribution in EgoYC2

and check how to cook from the reference videos prior to
recording. During recording, the highlighted step descrip-
tion is shown to indicate their current step and changes by
manipulating the button below. The AR markers are dis-
played on the screen in the transition of steps, which are
used to annotate temporal segments.

To maintain the coherency of captured activities, we in-
struct the participants to remember the recipes beforehand,
which allows them to move to the next step smoothly in the
actual recording. Even though they halted midway through
the recording to remember the step procedure, we treat it as
acceptable behavior as it is likely to refer to the recipe on
their tablets in real-life cooking.

Transfer learning setup: We use YC2 and EgoYC2 as the
source and target data, respectively. We split the EgoYC2
dataset into train and evaluation sets with 151 (964) and
75 (511) videos (step descriptions), respectively. To align
both datasets, we re-split the YC2 dataset according to the
EgoYC2’s split, where train and evaluation sets have 1,716
(13,324) and 75 (511) videos (step descriptions), respec-
tively. The evaluation sets correspond to each other, and
all the YC2 data that are not re-recorded in this work are
included in the training set.

Recipe class distribution: Figs. 2 and 3 show the distri-
bution of recipe classes for EgoYC2 and YC2. We collect
21 recipe classes out of 89 classes in YouCook2. The col-
lected recipe list of EgoYC2 is as follows: BLT, authentic
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Figure 3. Recipe distribution in YouCook2 [12]

Table 1. Quantitative results in scratch training on EgoYC2.
We train models from scratch in EgoYC2 with various input fea-
ture types: raw videos (V), cropped videos (VC), and those with
features of an object in hand (VC + HO).

Tnput dvc_eval SODA
B4 M C M C tloU
\" 0.01 3.11 123|360 59 307
VC 0.10 560 222|562 126 415
VC+HO | 0.10 7.34 29.6 | 7.04 179 514

japanese ramen, bangers and mash, caesar salad, croque
monsieur, galbi, hot dogs, macaroni and cheese, mapo tofu,
miso soup, pancake, pasta salad, pork fried rice, salmon
nigiri, salmon sashimi, scrambled eggs, shrimp tempura,
spaghetti carbonara, tuna sashimi, udon noodle soup, yaki
udon noodle.

2. Additional Implementation Details

The architectures of the feature converter F' and the view
classifier C follow a two-layer one-dimensional CNN and a
three-layer MLP, respectively. The video features are rep-
resented as 2,048-dimensional feature vectors for an input
image. We use PDVC [&] as a baseline for dense video
captioning. The PDVC uses a two-layer deformable trans-
former with a hidden size of 512 in the attention layers
and 2,048 in the feed-forward layers. The number of event
queries is set to 100 and the mini-batch size is set to 1. We
use the Adam [5] optimizer with an initial learning rate of
le-5 for the feature converter and PDVC, and le-4 for the
view classifier. While we validate various input types for
the target egocentric videos, we use the original video fea-
tures generated by TSN [9] on YouCook2.

3. Additional Results

Results with egocentric data only: Tab. 1 shows the
results of scratch training on EgoYC2 only. This demon-
strates consistent improvement with hand-object encoding
similar to the transfer setup (Tab. 3 in the main paper). With
paired videos of YC2 (Rows 2-4 in Tab. 3 in the main pa-
per), we observe significant gains over scratch performance,
which confirms the effectiveness of transfer learning in lim-
ited data regimes for egocentric video captioning.

Analysis of hyperparameter settings: We set the hy-
perparameter of view-invariant learning (\,q4y) by observ-
ing the source performance of the view-invariant pre-
training (VI-PT). We use the sum of two METEOR met-
rics (sum_METEOR) for the model selection during the pre-
training. We choose the hyperparameter with the highest
sum_METEOR value and set A,y as 0.1 consistently for the
fine-tuning in the target domain.

We also evaluate performance in the pre-training and
fine-tuning stages, according to different hyperparameters
in Tab. 2. Pre-training with \,q, = 0.01,0.1 achieves rel-
atively high performance, while fine-tuning with A\, =
0.01, 1 worsens performance than the PT+FT baseline (top
row). When adding the view-invariant technique to both
the pre-training and fine-tuning, we observe an improve-
ment of captioning ability with A\,qy = 0.01,0.1, as they
are adapted from the pre-training models where the view-
invariant learning performs well. Based on this study, our
setting of A\ygy = 0.1 chosen from the source pre-training
performs stably in the target domain with both the pre-
training and fine-tuning stages.

Hand-object segmentation results: We propose a segmen-
tation refinement scheme based on two segmentation mod-
els: EgoHOS [1 1] and SAM [6]. We show the segmentation
results for each method in Fig. 4. The EgoHOS inference
(left) often has noisy results (e.g., undersegmetation on the
top row and incorrect localization of long and narrow ob-



Figure 4. Our hand-object segmentation refinement. Each panel shows segmentation results of EgoHOS [11] (left), SAM [6] (middle),
and our refined scheme (right), respectively. Since we don’t use hand identity information (right/left), we show merged hand masks

compared to the results of EgoHOS.

Table 2. Analysis of hyperparameter settings. We validate dif-
ferent hyperparameters for the view-invariant learning (A.qv) and
show the performance on the target dataset.

VI? A\ dvc_eval SODA
PT FT "™ [ B4 M C M C tloU
0 | 1.68 891 525 ]| 891 373 59.0
v 0.0l | 220 945 524 | 899 399 550
v 0.1 | 206 944 552 |9.02 395 56.0
v
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jects on the middle row). EgoHOS suffers from general-
izing to novel real-life environments where diverse object
types and shapes could be present. The SAM inference
(middle) can segment any kind of object with higher gen-
eralization. Our refinement (right) computes the overlap
between the two results and outputs the most overlapped
segments from the SAM predictions. This enables us to
obtain further refined results even in crowded cooking envi-
ronments (e.g., middle row).

4. Discussions

Scripted vs. unscripted: Scripted and unscripted captures
each have pros and cons concerning data realism and anno-
tation quality. While unscripted videos, such as Ego4D [3]

and EPIC-KITCHENS [2], reflect actual activities, these
videos could include ambiguity in captions from human an-
notators, affecting the consistency of caption content and
granularity. Such inconsistency complicates cross-domain
evaluation. Our scripted approach not only aligned the con-
tent and granularity between datasets, but also instructed
participants to maintain action coherency in Sec. 1, enabling
natural step transitions in captured videos.

Unsupervised methods: Zero-shot generalization and un-
supervised adaptation remain challenging in video caption-
ing, as evidenced by the source-only results shown in Tab. 3
of the main paper. Our benchmark provides supervised
baselines and evaluations on egocentric videos, setting the
stage for future studies to develop unsupervised methods.
Overcoming recipe class gap: As shown in Sec. I, the
recipe class distribution is not perfectly aligned between
YC2 and EgoYC2. In addition to focusing on the view gap
addressed in the main paper, resolving category shift [1, 7,

101, the gap in the output (label) space, will be an important
future challenge.

Comparison with Ego-Exo4D: We provide the compar-
ison with a recently released Ego-Exo4D dataset [4], fea-
turing synchronized egocentric and exocentric videos with
textual annotations. In capture setups, the work follows the
strong assumption of time-synchronized and calibrated sce-
narios, while our captures between YC2 and EgoYC2 are
based on a relaxed assumption; they are not synchronized
and not captured in the same environment. Regarding its
text annotations !, the knowledge of the coherency between

Uhttps://docs.ego-exo4d-data.org/annotations/atomic_descriptions/


https://docs.ego-exo4d-data.org/annotations/atomic_descriptions/

steps is not explicitly modeled, as each description is in-
structed to be annotated independently. In contrast, our pro-
cedural captions are intended to model the necessary steps
to accomplish a target task, which inherently includes inter-
step relationships in the captions.
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