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S1. Datasets

S1.1. Data pre-processing

For the microtubules and synapse datasets, we used the
itk library v5.4rc1 [6] to rigidly align the pairs of low-
and high-resolution images. The registered image con-
tains padded pixels, while the reference image does not.
Thus, to avoid the models from learning misleading infor-
mation, we used the resulting transformation to reproduce
the padding in the reference image. For all datasets, im-
ages were cropped into patches of size 256 × 256 pixels in
a non-overlapping-fashion.

S1.2. Dataset partitioning

We here describe (Table S1) the number of FOVs, image
sizes and dataset partitions used for training, validation and
during test time.

Dataset FOVs Orig. image size (px) Train Validation Test

Microtubules 104 2560× 2560 1272 89 265
Mitochondria 345 600× 600 2646 153 306

Synapses 24 550× 550× 20 1198 56 112
Zebrafish 20 512× 512 3600 (72) 200 (4) 200 (4)

Table S1. Dataset description and pre-processing. For each
dataset, we report the number of fields of view (FOVs), the im-
age sizes, as well as the number of FOVs for the train, validation
and test partitions. For the zebrafish dataset, the same sample is
consecutively captured 50 times, exhibiting different noise real-
izations. Thus, we report in parenthesis the number of different
sub-FOVs (after dividing the original into patches) before using
all noise realizations.

S1.3. Diversity

In Table S2 we highlight the dimensions along which the
tested datasets vary.

# Sample type Imaging type Condition Raw Ground Truth

1 Microtubules STED Fixed Low-light dose High-light dose
2 Mitochondria STED Living Low-light dose High-light dose
3 Synapses Confocal Fixed Confocal Super-resolution
4 Zebrafish Confocal Fixed Single images Avg. of 50 images

Table S2. Differences between denoising datasets. We test the
denoising performance using four diverse datasets. These datasets
vary along the sample and imaging type, the cell condition (fixed
vs. live cells), as well as how the raw and ground truth data were
generated.

S2. Additional quality control metrics

The mean absolute error (MAE) between the ground
truth image y and reconstructed image ŷ captures the gen-
eral offset in pixel values and is calculated as:

MAE(y, ŷ) = |y − ŷ|. (1)

The normalized root mean-squared error (NRMSE)
compares the pixel values of the reconstruction ŷ to the
ground truth image y. NRMSE normalizes the root mean-
squared error to account for the scale of the data, making it
an scalar quantity that is easier to interpret.

NRMSE(y, ŷ) =

√
MSE(y, ŷ)

∥y∥2
(2)

Lower NRMSE values indicate a higher correspondence be-
tween the ground truth and reconstruction.

The peak signal-to-noise ratio (PSNR) quantifies the
quality of reconstructed images using a logarithmic mea-
sure of the peak error (mean squared error, MSE) between
y and ŷ. The PSNR value is expressed in decibels (dB),
which logarithmically measures the ratio between the max-
imum possible pixel value L of the images (here L = 255)
and the MSE:
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PSNR(y, ŷ) = 10log10
L2

MSE
(3)

Higher PSNR values indicate better image quality, sug-
gesting that the reconstructed image is closer to the original
image.

The structural similarity index measure (SSIM) [11] was
designed to improve PSNR or MAE by also incorporating
differences in luminance l(y, ŷ), contrast c(y, ŷ), and struc-
tural information s(y, ŷ). The SSIM is defined as:

SSIM(y, ŷ) = [l(y, ŷ)]α · [c(y, ŷ)]β · [s(y, ŷ)]γ (4)

where α, β, and γ define the relative importance of the
three components. Here, we set all to 1 to equally weight
each component. The SSIM ranges from 0 (structural dis-
similarity) to 1 (perfect structural similarity). The multi-
scale SSIM (MS-SSIM) additionally evaluates the structural
similarity across various scales to capture both fine details
and coarse structures [12]. To this aim, the images are itera-
tively smoothed using a Gaussian low-pass filter and down-
sampled by a factor of 2. The SSIM is computed at each
scale and the final MS-SSIM score is a weighted product
of the SSIM scores of each scale. The weights emphasize
different scales based on their importance to human percep-
tion. The MS-SSIM ranges from 0 (structural dissimilarity)
to 1 (perfect structural similarity).

The resolution, as defined by [1], assesses the resolu-
tion of individual images based on decorrelation analysis.
The core idea is to examine how the frequency compo-
nents of the image decorrelate as the distance between them
increases, in order to determine the point where signifi-
cant loss of detail occurs, thereby defining the resolution of
the image. High-resolution images have more details and,
therefore, higher decorrelation between neighboring pix-
els. To compute the resolution first standard edge apodiza-
tion is applied to the image to remove high-frequency ar-
tifacts. Then the image is Fourier transformed as I(k),
where k = [kx, ky] represent the coordinates in Fourier
space. Additionally, the Fourier transform is normalized as
In(k) = I(k)

|I(k)| . Next, the cross-correlation between I(k)
and In(k) is computed using the Pearson correlation and
rescaled to a value between 0 and 1. The calculation is re-
peated but In(k) is additionally filtered with a binary cir-
cular mask of radius M(k; r) with r ∈ [0, 1]. We can then
compute the correlation coefficient as:

d(r) =

∫∫
Re{I(k)In(k)M(k; r)}dkxdky√∫∫

|I(k)|2dkxdky
∫∫

|In(k)M(k; r)|2dkxdky
(5)

For differently high-pass filtered images (from weak to
very strong filtering) d(r) is computed and the peak position
ri and amplitude Ai are extracted. The resolution is then

defined as the maximum peak across Ng high-pass filters
as:

R =
2× pixelsize

max[r0, . . . , rNg ]
(6)

Lower values indicate a better resolution, as more fine-
grained features are visible.

As the resolution is measured on each image individu-
ally, we propose a method for denoising tasks that com-
putes the performance, respectively to the high-resolution
data. Specifically, we compute:

R̄ =
Rŷ

Ry
(7)

where Ry and Rŷ refer to the resolution of the high-
intensity image y and predicted image ŷ, respectively. Val-
ues close to 1 indicate similar resolution between the high-
intensity image and the prediction, i.e. Ry ≈ Rŷ . Values
above (resp. below) 1 indicate that the prediction exhibits
worse (resp. better) resolution than the ground-truth high-
intensity image.

The learned perceptual image patch similarity (LPIPS)
[14] assesses the perceptual similarity between images. In
contrast to PSNR and SSIM, LPIPS compares feature repre-
sentations extracted from a pre-trained deep neural network
(here AlexNet) to assess perceptual similarity, which of-
ten aligns more closely with human visual perception. The
LPIPS value ranges from 0 (high perceptual similarity) to 1
(low perceptual similarity).

S3. Benchmark models

Here, we describe the specific setup and training condi-
tions for each benchmark model.

• Noise2Void [5] - We use the TensorFlow implementa-
tion from the authors. Epochs: 100, batch size: 32,
initial learning rate: 2e−4. All other parameters use
the default. We use the best-trained state identified by
default by Noise2Void.

• pix2pix [8] - We use the implementation from Zero-
CostDL4Mic [9]. Epochs: 5, batch size: 1, initial
learning rate: 2e−4.

• UNet-RCAN [2] - Default settings. Max epochs: 200,
initial learning rate: 1e−4, batch size: 1. We use the
best-trained state identified by UNet-RCAN.

• CARE [13] - We use the implementation from Zero-
CostDL4Mic. Epochs: 1000, batch size: 8, initial
learning rate: 4e−4. We used the best-trained state
identified by default by CARE.



S4. Versions
To compute the mean absolute error (MSE) and Pearson

correlation, we use NumPy v1.24.4 [3]. The peak signal-
to-noise ratio (PSNR) is computed using the scikit-image
library v0.19.3 [10]. The multi-scale structural similarity
index measure (MS-SSIM) and learned perceptual image
patch similarity (LPIPS) are computed using Torchmetrics
v1.3.1. The resolution is computed using the plugin Im-
ageDecorrelationAnalysis [1] for ImageJ [7].

S5. Averaging across many reconstructions
To improve the performance of the DDPM and remove

any noise that was not removed by the denoising process,
we employ an averaging strategy. Specifically, we generate
several images using the same conditioning input but differ-
ent inference runs. We consistently observe an increase in
performance across several metrics when averaging, except
for LPIPS (see Fig. S1), and in some cases resolution (see
DDPM vs. DDPM-avg for microtubule and synapse in Fig.
S5). This might be explained by the smoothing effect of
averaging which removes fine-grained structures. Note that
this fine-grained structure is not always desirable to keep
in the image and might also indicate noise. Moreover, we
observe the performance saturating with approximately 10
averaged samples.

S5.1. Uncertainty maps

We benefit from the above-described repeated sampling
strategy to enhance the interpretability of the model. In par-
ticular, repeated sampling is valuable as it captures the vari-
ability of the model, thus reflecting its uncertainty in restor-
ing certain areas of the image. After the model performs
inference multiple times with the same conditioning input
but different inference runs, we approximate the uncertainty
based on the pixel-wise standard deviation (Eq. 8), and on
the pixel-wise entropy (Eq. 9) across the different model
outputs. In principle, it is also possible to compute uncer-
tainty in a more abstract-fashion using the latent representa-
tions of the predicted image, i.e. in the H-space of diffusion
models, which we leave for future work.

Uncertainty maps provide us with a tool to verify that
the model has learnt to restore regions in the image acc. For
instance, one would expect complex and inherently ambigu-
ous areas such as edges, to be predicted with a high uncer-
tainty, otherwise suggesting over-fitting. Likewise, simple
and smooth regions are expected to be predicted with low
uncertainty, otherwise a sign of potential under-fitting. Ad-
ditionally, if one were to collect additional data to refine
the model, uncertainty maps can pinpoint the sub-structures
that the current model struggles with, thus enabling a more
informed data collection.

Additional to elucidating potential areas of improvement

Figure S1. Averaging across samples improves the perfor-
mance for most metrics for the DDPM. We repeatedly predict
a denoised image using the same low-intensity conditioning input
but different initial noise. We compute the mean image across dif-
ferent numbers of reconstructions. Average performance is shown
in bold, and the translucent ban indicates the standard deviation.

in the model, uncertainty maps can also be useful during the
post-processing of the data, by informing about regions that
could require further visual inspection or manual process-
ing.

Let S be an uncertainty map for a set of images, each of
size 256× 256. Let sjk be the map’s pixel value located at
(j, k). Thus, S = (sjk)1≤j≤256,1≤k≤256.

Given N repeated predictions {ŷ1, ..., ŷN} from the
same noisy image, we compute the standard deviation-
based uncertainty map as:

sjk =

√√√√∑N
i=1

(
ŷijk − ¯̂yjk

)2

2552N
, (8)

where N = 15 is the number of times we repeat the sam-
pling, ¯̂yjk is the average of the multiple predicted samples
at the (j, k)-th pixel, and 2552 is a normalization factor to
constrain values between 0 and 1.

Another way to compute uncertainty is based on the en-
tropy of the pixel values across predicted samples, and is



defined as follows:

sjk = −
M∑

m=1

pm log pm, (9)

where M is the number of unique pixel values at location
(j, k) among the single image predictions, and pm is the
probability of the m-th unique pixel value at location (j, k).
We illustrate several examples of the two aforementioned
types of uncertainty maps in Fig. S2.

When computing uncertainty as the pixel-wise standard
deviation, we find that many high uncertainty regions cor-
respond to the brighter areas of the low-resolution images.
This might be due to small variations in intensity being am-
plified when calculating their difference. Another factor
that could explain the higher uncertainty in bright regions is
the complex structure underlying these areas, making their
reconstruction more challenging for the model. Addition-
ally, the model could be over-relying on these bright fea-
tures to reconstruct the multiple samples, which would in-
dicate a bias in how the model handles intensity features.
Moreover, the model shows the highest uncertainty for the
synapse dataset (see Fig. S2C), whereas the mitochondria
dataset has the lowest uncertainty values (see Fig. S2B. In
particular, for mitochondria, the model is most uncertain in
predicting the membrane, an area which is inherently am-
biguous in the noisy data (see Fig. S2B).

In contrast, uncertainty regions for the entropy-based
formulation go beyond bright areas, and also include very
noisy background regions. Combined with the previous ob-
servations, this can be interpreted as the predicted pixel in-
tensities being uniformly distributed in a narrow range of
values, which is a positive feature given the absence of
complex structures on those regions, and namely the case
for the background in the microtubules and the mitochon-
dria datasets (see Fig. S2A, B). Furthermore, on the ze-
brafish images, we observe high uncertainty also in regions
with visibly fine-grained details in the high-resolution im-
age, that are ambiguous in the low-resolution image due
to overlaid noise (see Fig. S2D). Thus, the model has not
learnt to restore such small structures from noisy images.

In both uncertainty formulations, smooth regions in the
noisy images are characterized by high-confidence values
in the uncertainty maps, which reflects the model’s ability
to reliably predict non-complex regions.

S6. Results on additional metrics

Additionally to the results reported in the main text, we
include additional metrics here (Fig. S3). Specifically, we
report the performance of all models on the NRMSE and
Pearson correlation for the internal (Table S3) and external
(Table S4) datasets.

Figure S2. Uncertainty maps based on repeated sampling
strategy with DDPM. For each dataset (A: microtubules, B: mi-
tochondria, C: synapse, D: zebrafish), we show a subfigure with
two low- (first row) and high- (second row) resolution images, and
the resulting uncertainty maps, based on pixel-wise standard devi-
ation (second row) or on entropy (third row). Note that for better
visibility, the standard deviation-based uncertainty range is differ-
ent for every dataset. Likewise, the pixel range was adjusted for
the noisy images of mitochondria and microtubules.

S6.1. Reconstruction resolution

Additionally to the above-reported performance metrics,
we also compute the resolution as proposed by Descloux
et al. [1], as well as the resolution of the reconstruction
scaled by that of the ground truth (resolution ratio; see Ta-
ble S5). The resolution indicates the scale of the smallest
fine-grained structure visible in the image. We observe that



Figure S3. Conditioned DDPMs outperform several previous
methods in denoising STED and confocal images. Performance
comparison on additional metrics between our method and several
previously proposed benchmark models for the microtubule (A),
mitochondria (B), synapse (C), and zebrafish (D) datasets. We in-
dicate the median of the best-performing model for each metric as
a dashed line in the respective color. Mood’s median test was used
to compute statistical significance, ***: p < .001, **: p < .01, *:
p < .05, otherwise not significant. In the upper (resp. lower) row,
significance is indicated for the DDPM-avg (resp. DDPM).

Microtubule Mitochondria
Model NRMSE Corr. NRMSE Corr.

Raw 0.99 0.46 0.97 0.40
Noise2Void 0.65 0.87 0.32 0.90

Pix2pix 0.35 0.88 0.40 0.83
UNet-RCAN 0.90 0.92 3.76 0.92

CARE 0.26 0.92 0.42 0.90
DDPM 0.29 0.89 0.36 0.87

DDPM-avg 0.25 0.92 0.30 0.92

Table S3. Benchmarking the conditioned DDPM with addi-
tional metrics. We report the median value of additional perfor-
mance metrics, NRMSE (the lower the better) and Pearson corre-
lation (the higher the better), across our two novel datasets.

Synapse Zebrafish
Model NRMSE Corr. NRMSE Corr.

Raw 1.33 0.60 0.70 0.74
Noise2Void 1.32 0.61 0.27 0.94

Pix2pix 0.69 0.77 0.32 0.91
UNet-RCAN 0.58 0.83 0.55 0.94

CARE 0.74 0.83 0.31 0.95
DDPM 0.61 0.80 0.30 0.92

DDPM-avg 0.58 0.81 0.24 0.95

Table S4. Benchmarking the conditioned DDPM with addi-
tional metrics. Perfomance evaluation with NRMSE (the lower
the better) and Pearson correlation (the higher the better) across
the two external datasets.

pix2pix performs best for the fixed-cell microtubules and
zebrafish datasets, Noise2Void on the synapse dataset, and
UNet-RCAN on the live-cell mitochondria dataset. In par-
ticular, the resolution for the low-resolution images (raw) is
lower than the high-resolution images (GT), suggesting the
presence of artifacts, which is misleading for the evaluation
of this metric for the synapse dataset. Note that all other
evaluation metrics rate these methods poorly on the respec-
tive datasets. However, these metrics mostly rely on some
form of pixel-wise error, whereas the resolution is based
on cross-correlations within the image in the frequency do-
main. However, we observe that the resolution often picks
up high-frequency noise in the data which wrongly im-
proves the results.

Microtubule Mitochondria Synapse Zebrafish
Model r / r ratio r / r ratio r / r ratio r / r ratio

Raw 128.60 / 1.3 3563.64 / 11.91 143.14 / 0.49 5297.4 / 6.82
GT 98.80 / 1.00 299.24 / 1.00 293.33 / 1.00 776.70 / 1.00

Noise2Void 107.85 / 1.09 111.36 / 0.37 147.04 / 0.50 1141.8 / 1.47
Pix2pix 88.45 / 0.90 149.62 / 0.50 230.58 / 0.79 730.05 / 0.94

UNet-RCAN 118.35 / 1.20 76.72 / 0.27 385.88 / 1.32 1031.70 / 1.33
CARE 119.75 / 1.21 137.54 / 0.46 363.20 / 1.24 772.35 / 0.99

DDPM 97.6 / 0.99 177.38 / 0.59 330.18 / 1.13 831.60 / 1.07
DDPM-avg 115.28 / 1.17 110.74 / 0.37 363.20 / 1.24 777.75 / 1.00

Table S5. Resolution across models and datasets. We report the
median of image resolution in nm, and the resolution ratio with
respect to ground-truth (GT) resolution.

S7. Model architecture
S7.1. Timestep embedding

As in [4], we replace ADM’s original timestep embed-
ding layer, and instead embed the noise level information as
Fourier features:

MPFourier(a) =


√
2cos(2π(f1a+ φ1))√
2cos(2π(f2a+ φ2))

...√
2cos(2π(fNa+ φN ))

 , (10)

where fi ∼ N (0, 1), φ ∼ U(0, 1), and a = ᾱt is a
scalar defined as a function of the noise level t and the
variance schedule. In the feature vector,

√
2 is the scal-

ing factor that enables magnitude preservation, followed by
a linear transformation (as shown in Fig. S4A) with learn-
able parameters, a magnitude-preserving sum operator, and
a magnitude-preserving SiLU non-linearity.

S8. Statistical significance of model perfor-
mances

To compare the performance across models we com-
puted the p-values using Mood’s median test. We report



Figure S4. U-Net architecture. Adapted from Karras et al. [4].
A) We depict the three main parts of the U-Net model: an aux-
iliary embedding network that conditions the U-Net according to
the noise level, encoder blocks that gradually decrease the resolu-
tion of the image, and decoding blocks that gradually increase it.
B) The network receives as input the noisy image concatenated to
the conditioning image (low-resolution image in our case). This
is then processed by the encoder and decoder blocks following the
main path (solid arrows), that additionaly communicate between
them via skip connections (dashed arrows). EncD and EncA are
encoder blocks that include downsampling and self-attention, re-
spectively. This is analogous to decoder blocks DecD and DecA.
cin, cout, cskip are constants that depend on the noise level. MP
stands for Magnitude-Preserving. Layers are color-coded as fol-
lows: green - parameters are learned, clay - parameters are learned
with forced weight normalization, blue - function is fixed, dashed
contour - not always present.

them here below (see Tables S6, S7, S8, S9) for each dataset
and all metrics.

Model 1 Model 2 Metric p

DDPM Noise2Void MAE 5.37e-41
DDPM pix2pix MAE 5.97e-01
DDPM UNet-RCAN MAE 1.91e-30
DDPM CARE MAE 1.11e-16

DDPM-avg Noise2Void MAE 2.31e-54
DDPM-avg pix2pix MAE 4.82e-16
DDPM-avg UNet-RCAN MAE 3.56e-53
DDPM-avg CARE MAE 3.78e-01
DDPM-avg DDPM MAE 5.37e-18

DDPM Noise2Void PSNR 5.70e-40
DDPM pix2pix PSNR 1.12e-01
DDPM UNet-RCAN PSNR 3.09e-45
DDPM CARE PSNR 4.54e-20

DDPM-avg Noise2Void PSNR 3.01e-59
DDPM-avg pix2pix PSNR 2.48e-17
DDPM-avg UNet-RCAN PSNR 4.97e-71
DDPM-avg CARE PSNR 3.78e-01
DDPM-avg DDPM PSNR 4.54e-20

DDPM Noise2Void MS-SSIM 6.61e-10
DDPM pix2pix MS-SSIM 2.02e-11
DDPM UNet-RCAN MS-SSIM 3.42e-02
DDPM CARE MS-SSIM 5.33e-36

DDPM-avg Noise2Void MS-SSIM 5.24e-58
DDPM-avg pix2pix MS-SSIM 2.11e-04
DDPM-avg UNet-RCAN MS-SSIM 4.82e-16
DDPM-avg CARE MS-SSIM 5.97e-01
DDPM-avg DDPM MS-SSIM 4.28e-34

DDPM Noise2Void LPIPS 3.71e-44
DDPM pix2pix LPIPS 1.35e-02
DDPM UNet-RCAN LPIPS 5.37e-41
DDPM CARE LPIPS 3.46e-26

DDPM-avg Noise2Void LPIPS 2.11e-04
DDPM-avg pix2pix LPIPS 2.13e-10
DDPM-avg UNet-RCAN LPIPS 4.95e-05
DDPM-avg CARE LPIPS 7.24e-01
DDPM-avg DDPM LPIPS 5.18e-27

Table S6. P-values reported for the microtubule dataset.



Model 1 Model 2 Metric p

DDPM Noise2Void MAE 7.63e-03
DDPM pix2pix MAE 7.45e-05
DDPM UNet-RCAN MAE 3.04e-134
DDPM CARE MAE 1.83e-05

DDPM-avg Noise2Void MAE 4.66e-03
DDPM-avg pix2pix MAE 2.09e-17
DDPM-avg UNet-RCAN MAE 1.63e-132
DDPM-avg CARE MAE 1.23e-18
DDPM-avg DDPM MAE 3.52e-07

DDPM Noise2Void PSNR 1.91e-02
DDPM pix2pix PSNR 1.62e-03
DDPM UNet-RCAN PSNR 3.04e-134
DDPM CARE PSNR 1.84e-06

DDPM-avg Noise2Void PSNR 1.62e-03
DDPM-avg pix2pix PSNR 5.13e-18
DDPM-avg UNet-RCAN PSNR 3.04e-134
DDPM-avg CARE PSNR 6.51e-20
DDPM-avg DDPM PSNR 4.81e-10

DDPM Noise2Void MS-SSIM 8.08e-01
DDPM pix2pix MS-SSIM 1.62e-03
DDPM UNet-RCAN MS-SSIM 1.64e-28
DDPM CARE MS-SSIM 1.25e-01

DDPM-avg Noise2Void MS-SSIM 3.74e-05
DDPM-avg pix2pix MS-SSIM 5.13e-18
DDPM-avg UNet-RCAN MS-SSIM 1.42e-50
DDPM-avg CARE MS-SSIM 9.18e-04
DDPM-avg DDPM MS-SSIM 8.16e-07

DDPM Noise2Void LPIPS 3.04e-134
DDPM pix2pix LPIPS 7.63e-03
DDPM UNet-RCAN LPIPS 3.04e-134
DDPM CARE LPIPS 6.49e-37

DDPM-avg Noise2Void LPIPS 1.48e-07
DDPM-avg pix2pix LPIPS 2.13e-106
DDPM-avg UNet-RCAN LPIPS 7.49e-116
DDPM-avg CARE LPIPS 1.82e-117
DDPM-avg DDPM LPIPS 1.63e-132

Table S7. P-values reported for the mitochondria dataset.

Model 1 Model 2 Metric p

DDPM Noise2Void MAE 1.00e-44
DDPM pix2pix MAE 8.35e-04
DDPM UNet-RCAN MAE 2.29e-01
DDPM CARE MAE 1.22e-23

DDPM-avg Noise2Void MAE 1.00e-44
DDPM-avg pix2pix MAE 3.43e-05
DDPM-avg UNet-RCAN MAE 2.31e-02
DDPM-avg CARE MAE 1.22e-23
DDPM-avg DDPM MAE 2.29e-01

DDPM Noise2Void PSNR 3.04e-31
DDPM pix2pix PSNR 5.01e-03
DDPM UNet-RCAN PSNR 5.04e-01
DDPM CARE PSNR 4.28e-08

DDPM-avg Noise2Void PSNR 1.29e-32
DDPM-avg pix2pix PSNR 3.09e-04
DDPM-avg UNet-RCAN PSNR 8.94e-01
DDPM-avg CARE PSNR 9.13e-09
DDPM-avg DDPM PSNR 5.04e-01

DDPM Noise2Void MS-SSIM 2.65e-27
DDPM pix2pix MS-SSIM 2.31e-02
DDPM UNet-RCAN MS-SSIM 5.04e-01
DDPM CARE MS-SSIM 9.42e-12

DDPM-avg Noise2Void MS-SSIM 1.38e-28
DDPM-avg pix2pix MS-SSIM 3.09e-04
DDPM-avg UNet-RCAN MS-SSIM 6.88e-01
DDPM-avg CARE MS-SSIM 1.99e-13
DDPM-avg DDPM MS-SSIM 5.04e-01

DDPM Noise2Void LPIPS 2.24e-46
DDPM pix2pix LPIPS 2.29e-01
DDPM UNet-RCAN LPIPS 8.24e-02
DDPM CARE LPIPS 3.37e-10

DDPM-avg Noise2Void LPIPS 2.24e-46
DDPM-avg pix2pix LPIPS 5.04e-01
DDPM-avg UNet-RCAN LPIPS 1.42e-01
DDPM-avg CARE LPIPS 1.82e-09
DDPM-avg DDPM LPIPS 8.94e-01

Table S8. P-values reported for the synapse dataset.



Model 1 Model 2 Metric p

DDPM Noise2Void MAE 2.14e-10
DDPM pix2pix MAE 2.51e-36
DDPM UNet-RCAN MAE 2.43e-66
DDPM CARE MAE 9.36e-10

DDPM-avg Noise2Void MAE 2.43e-66
DDPM-avg pix2pix MAE 2.43e-66
DDPM-avg UNet-RCAN MAE 2.43e-66
DDPM-avg CARE MAE 2.43e-66
DDPM-avg DDPM MAE 2.43e-66

DDPM Noise2Void PSNR 1.53e-08
DDPM pix2pix PSNR 1.53e-08
DDPM UNet-RCAN PSNR 1.53e-08
DDPM CARE PSNR 5.64e-01

DDPM-avg Noise2Void PSNR 1.53e-08
DDPM-avg pix2pix PSNR 6.35e-63
DDPM-avg UNet-RCAN PSNR 2.43e-66
DDPM-avg CARE PSNR 2.43e-66
DDPM-avg DDPM PSNR 1.02e-14

DDPM Noise2Void MS-SSIM 5.73e-08
DDPM pix2pix MS-SSIM 6.69e-06
DDPM UNet-RCAN MS-SSIM 1.53e-08
DDPM CARE MS-SSIM 5.73e-08

DDPM-avg Noise2Void MS-SSIM 1.53e-08
DDPM-avg pix2pix MS-SSIM 1.53e-08
DDPM-avg UNet-RCAN MS-SSIM 1.53e-08
DDPM-avg CARE MS-SSIM 5.73e-08
DDPM-avg DDPM MS-SSIM 1.53e-08

DDPM Noise2Void LPIPS 2.14e-10
DDPM pix2pix LPIPS 3.44e-04
DDPM UNet-RCAN LPIPS 2.43e-66
DDPM CARE LPIPS 8.96e-25

DDPM-avg Noise2Void LPIPS 1.53e-08
DDPM-avg pix2pix LPIPS 8.51e-21
DDPM-avg UNet-RCAN LPIPS 1.53e-08
DDPM-avg CARE LPIPS 8.12e-04
DDPM-avg DDPM LPIPS 8.96e-25

Table S9. P-values reported for the zebrafish dataset.
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