
LiCamPose: Combining Multi-View LiDAR and RGB Cameras for Robust
Single-timestamp 3D Human Pose Estimation

Supplementary Material

6. Different Scanning Patterns of Point Cloud
There are various methods to obtain or scan the point

cloud: 1) randomly sampling the depth map; 2) sampling
the depth map using multiple equidistant horizontal lines to
mimic Velodyne LiDARs; and 3) sampling the depth map
with the ”Rose curve” sampling equation as discussed in
our paper to replicate Livox LiDARs. Figure 9 illustrates
that the ”Rose curve” sampling equation yields minimal
information due to its localized concentrated scan. How-
ever, Livox LiDARs are more cost-effective than Velodyne
LiDARs and have been employed in numerous applica-
tions, including surveillance. Additionally, our Baseket-
Ball dataset is captured using Livox LiDARs. Therefore,
we adopt the Livox scanning pattern to simulate the point
cloud scanning in our experiments.

7. BaseketBall
BasketBall is an outdoor dataset capturing a basketball

match using four sensor nodes, each comprising one Livox
LiDAR and one RGB camera, in a convergent acquisition
setup. The dataset presents challenges due to its extensive
coverage, occlusions, and the dynamic motions of the play-
ers (Figure 3). We have developed an annotation tool to la-
bel the players’ 3D bounding boxes and IDs. In the future,
we plan to integrate 3D human keypoint annotation into the
tool with the assistance of LiCamPose.

8. The Detailed Structure of V2V-Net and
Fusion-Net

Figure 8 shows the detailed structure of V2V-Net and
Fusion-Net. i = 1 for the one of point cloud information
and i = K for the one of RGB information, K is the number
of joints. X,Y, Z represents the setting of volumetric space,
and F represents F1 and F2. As indicated in the legend, the
yellow arrow represents a standard 3D convolutional layer,
while the blue arrow denotes a Residual Block consisting of
two 3D convolutional layers. As indicated in the legend, the
yellow arrow represents a standard 3D convolutional layer,
while the blue arrow denotes a Residual Block consisting of
two 3D convolutional layers.

9. Human Prior Loss
We designed the human prior loss to encourage the net-

work to generate human-like 3D keypoints. The human
prior loss comprises three components: 1) the predicted

bone lengths should be within a reasonable range; 2) the
predicted lengths of symmetric bones should be similar; and
3) the predicted bone angles should be reasonable according
to human kinematics.

We set a limited length range for all bones. In our case,
we set lmin = 0.05m and lmax = 0.7m. So the Llength can be
defined as:

Llength =

N∑
b=1

C(Bi − lmax, 0) + C(lmin −Bi, 0), (7)

where C(·) is the clipping function that clip the value greater
than 0, N is the number of bones. As to the symmetric
bones, we set the symmetric bones as a pair, and set L2 loss
among them. So the Lsymm can be defined as:

Lsymm =

N∑
b=1

∥Bi −Bsymm(i)∥2, (8)

where Bsymm is the symmetric bone of Bi. As to angle loss,
we limit the nose-neck-midhip angle and hip-knee-ankle
angle specifically to let nose be in front of the body and
legs be bent forward. Figure 10 shows the definition of each
joint and vectors. Specially, we do not directly calculate the
angle of the bones, but calculate the dot product of corre-
sponding vectors. First, we calculate the forward direction
vector d⃗forward of the body, which is the cross product of the
unit vector from neck to midhip

−−→
J0J2 and unit vector from

neck to left shoulder
−−→
J0J3:

d⃗forward =
−−→
J0J2 ×

−−→
J0J3, (9)

Then, as to the nose-neck-midhip angle, we calculate the
unit vector from neck to nose

−−→
J1J0 denoted by d⃗nose, and

we calculate the dot product of d⃗nose and d⃗forward and get the
head angle loss:

Lhead ang = C(d⃗forward · d⃗nose, 0, 1), (10)

where C(·) is the clipping function that clip the value into
0 to 1. As to the hip-knee-ankle angle, we need to get the
midpoint of the hip and ankle denoted by cl and cr for left
leg and right leg respectively. Then, we calculate the unit
vectors from knee point to the leg’s midpoint as d⃗l leg and
d⃗r leg. Therefore, we get the leg angle loss:

Lleg ang = C(d⃗forward · d⃗l leg, 0, 1) + C(d⃗forward · d⃗r leg, 0, 1),
(11)



Conv3D
𝒏𝒏 × 𝒏𝒏 × 𝒏𝒏

Conv3D
𝟑𝟑 × 𝟑𝟑 × 𝟑𝟑

Conv3D
𝟑𝟑 × 𝟑𝟑 × 𝟑𝟑

7x7x7

1x1x1

pool pool

deconv deconv

𝑖𝑖 × 𝑋𝑋 × 𝑌𝑌 × 𝑍𝑍 16 × 𝑋𝑋 × 𝑌𝑌 × 𝑍𝑍 32 × 𝑋𝑋 × 𝑌𝑌 × 𝑍𝑍

32 × 𝑋𝑋 × 𝑌𝑌 × 𝑍𝑍F × 𝑋𝑋 × 𝑌𝑌 × 𝑍𝑍

32 ×
𝑋𝑋
2

×
𝑌𝑌
2

×
𝑍𝑍
2

32 ×
𝑋𝑋
2

×
𝑌𝑌
2

×
𝑍𝑍
2

64 ×
𝑋𝑋
2

×
𝑌𝑌
2

×
𝑍𝑍
2

64 ×
𝑋𝑋
2

×
𝑌𝑌
2

×
𝑍𝑍
2

64 ×
𝑋𝑋
4

×
𝑌𝑌
4

×
𝑍𝑍
4

64 ×
𝑋𝑋
4

×
𝑌𝑌
4

×
𝑍𝑍
4

128 ×
𝑋𝑋
4

×
𝑌𝑌
4

×
𝑍𝑍
4

128 ×
𝑋𝑋
4

×
𝑌𝑌
4

×
𝑍𝑍
4

Figure 8. The structure and detailed setting of V2V-Net and Fusion-Net.

Figure 9. Different scanning patterns of point clouds. All samples
shown in this figure are from the same scene, captured at the same
time, and contain the same number of points.

Figure 10. Definition of Langle.

where C(·) is the clipping function that clip the value into 0
to 1. Therefore, we can calculate the angle loss:

Langle = Lhead ang + Lleg ang, (12)

Finally, we combine the three losses together as the human
prior loss:

Lprior = γ1Llength + γ2Lsymm + γ3Langle, (13)

where γ1, γ2 and γ3 are the weights of each loss. In our
case, we set all the weights as 1.

Table 6. Human detection results on different datasets. “#”
means using synthetic datasets (BaseketBallSync and Panoptic-
Sync) to pretrain and directly evaluate on corresponding real-
world datasets.

Datasets Methods Metric

AP50 AP70

BasketBall
MVDet 69.41 37.66

PointPillars# 88.17 44.26
PointPillars 89.77 69.96

Panoptic
VoxelPose 21.17 0.19

PointPillars# 40.17 6.25
PointPillars 73.83 13.97

10. Extended Experiments

In this section, we conduct experiments to verify the ad-
vantages of using point cloud input for pedestrian detection.
Additionally, we present more examples to explain the rela-
tionship between entropy value and pose rationality.

10.1. Human Detection

For evaluating human detection, we assess performance
using the established average precision (AP) metric as de-
scribed in KITTI [16]. We consider detections as true pos-
itives if they overlap by more than 70% (AP70) or 50%
(AP50).

In our current experiment, we adopt PointPillars [32] to
detect human bounding boxes. For comparison with multi-
view RGB-based methods, we utilize VoxelPose’s CPN [52]
and MVDet [23], which is more suitable for large scene
applications. In the CMU Panoptic Studio setup, Voxel-
Pose [52] achieves relatively accurate center localization.
However, it sets the bounding box size to a constant value
(we use 0.8m × 0.8m × 1.9m for tighter results, compared
to 2m × 2m × 2m in [52]), which affects detection per-
formance. In the BasketBall dataset, we adopt MVDet to
detect humans. Table 6 shows that the point cloud-based
method outperforms the multi-view RGB-based method in



Figure 11. The entropy value and the specific poses. repre-
sents an increasing entropy value from left to right among row’s
samples. The size of joints’ ball represents the magnitude of the
joint’s entropy value.

terms of AP50 and AP70, benefiting from the 3D informa-
tion of the original point cloud. Additionally, we verify the
generalization ability of the point cloud-based method by
pretraining it on our synthetic dataset, and it still produces
acceptable results.

10.2. The analysis of unsupervised training losses.

Figure 12 qualitatively shows that these designed unsu-
pervised training losses significantly enhance robustness to
2D pose estimation errors.

10.3. Entropy Analysis

Figure 11 shows the entropy value and the specific poses,
and we can find that the 3D poses become more and more
irrational while the entropy goes up.



Figure 12. Qualitative visualization on BasketBall about different unsupervised training losses. “Baseline” uses only pseudo 2D pose
supervision. “Entropy” indicates the addition of entropy-selected pseudo 3D pose supervision. “Prior” denotes the incorporation of human
prior loss.


