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S1. Dataset

In our experiments, we utilize only the RGB channels

from Sentinel-2 imagery, simulating true color imagery

(TCI) using Sentinel Hub’s L1C Optimized Script1. To re-

fine the training data, we apply a filtering step using World-

Cover segmentation labels from the S2-NAIP dataset [3],

ensuring that the model is trained on diverse urban envi-

ronments. Specifically, only tiles with at least 30% ur-

ban coverage are included, resulting in approximately 4,442

tiles in the training set and 95 tiles in the validation set.

The test set comprises around 1,883 tiles, selected to eval-

uate the model’s ability to generalize to regions beyond the

United States by incorporating diverse global locations such

as forests, mountains, and urban landscapes. Additionally,

during inference, we apply the model to various cities out-

side the United States, as detailed in Sec. S3. This com-

prehensive evaluation ensures the model’s robustness across

varying geographical and environmental contexts, which is

critical for the building segmentation task.

S2. Implementation Details

S2.1. Baselines and Comparisons

We use SatLAS-SR [3] as our primary baseline, a model

that extends ESRGAN [2] by integrating CLIP loss, an

object-aware discriminator, and a feature extractor from

a foundation model for remote-sensing super-resolution.

SatLAS-SR achieved better results when using multiple

Sentinel-2 inputs of the same area taken in different time,

but for our experiments, we only use a single Sentinel-2 im-

age that we focus on utilizing location-based features rather

than than incorporating temporal data. we also incorporate

CLIP loss and the object-aware discriminator, as these com-

ponents demonstrated the most significant improvements in
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the paper. To further compare with current state-of-the-art

methods, we fine-tune Stable Diffusion [1] for the super-

resolution task using ControlNet. Stable Diffusion tradi-

tionally generates images using text prompts, while Con-

trolNet [4] allows for an additional input, such as an image,

to guide the generation process. This conditioning mech-

anism enables greater control over the output by leverag-

ing input images like edges, depth maps, or other structural

cues, which the model uses alongside the text prompt to

shape the generated image. For a fair comparison, we fine-

tune Stable Diffusion on our dataset and use a dummy text

prompt for each sample to simulate similar input conditions

across all models. Given that Stable Diffusion operates on

512×512 pixel images, we first upsample both Sentinel and

NAIP imagery to 512×512 before downscaling them back

to their original resolution after processing.

S2.2. Training Details

For all experiments, our model is implemented in Py-

Torch and runs on an NVIDIA A100-SXM4 GPU with a

batch size of 16. For training hyperparameters, we follow

Satlas-SR [3]. All models are trained from scratch using

the Adam optimizer, with the learning rate initialized to

10
−4. For both the generator and discriminator, we em-

ploy the large variant mentioned in the SatLAS-SR paper,

which includes 256 features, 128 grow channels, and 30

blocks. For our location-matching discriminator and lo-

cation embedding features, we use 64 features. The loss

function is a weighted combination of several components:

the pixel loss λpix = 1.0, perceptual loss λperceptual = 1.0,

GAN loss λGAN = 0.1, CLIP loss λCLIP = 1.0, Open-

StreetMap loss λOSM = 0.3, and our location-matching loss

λloc match = 1.0.
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S3. Qualitative results

We performed super-resolution inference over a large

area in Malmö, Denmark to assess the performance of dif-

ferent methods at scale. The comparison includes four sets

of figures: the low-resolution Sentinel-2 input (Fig. 1), out-

puts from Satlas-SR (Fig. 2), Stable Diffusion (SD) + Con-

trolNet (Fig. 3), and our method (Fig. 4). Starting with SD

+ ControlNet, while it offers some improvement in gener-

ating finer details, it suffers from significant inconsistencies

in both color and texture across patches. These inconsis-

tencies become especially problematic when stitching the

patches together, resulting in a disjointed appearance with

noticeable blocky patterns. The overall image looks frag-

mented, as if each patch comes from a completely different

area. This lack of cohesion is particularly disruptive in re-

gions with homogeneous textures, such as agricultural fields

or open urban areas, where smooth transitions are expected.

In the other hand, Satlas-SR and our method show much

more consistent color and texture across patches. However,

Satlas still displays subtle block patterns. These patterns

arise because the method does not share sufficient context

between patches, leading to noticeable tiling effects in ar-

eas where the texture is expected to remain constant. Our

method, on the other hand, effectively overcomes this limi-

tation by ensuring smooth transitions between patches, pre-

serving both color and texture consistency throughout the

entire scene. This leads to a more visually cohesive result,

without the blocky artifacts seen in the other methods.

A closer inspection reveals several challenges in apply-

ing super-resolution independently to each patch, as seen in

the results from Satlas-SR and ours in 5. For example, in

urban residential areas, we observe that roads are often in-

terrupted between patches, creating discontinuities that dis-

rupt the visual flow of the scene. Similarly, in industrial

zones, large structures like buildings can become incom-

plete, with parts missing in certain patches. In suburban

neighborhoods, several buildings appear fragmented or dis-

torted, breaking the continuity of the image. Our method

addresses these inconsistencies by using information from

neighboring patches to maintain coherence across the entire

area.

S4. Ablation study

We analyze the impact of adding self-attention and loca-

tion embeddings (via cross-attention) on the model’s perfor-

mance. We compare four configurations: a baseline model

(Satlas-SR), a model with self-attention, a model with both

self-attention and location embeddings, and the final model,

which includes a location matching discriminator. The per-

formance metrics for these models, including PSNR, SSIM,

LPIPS, and CLIP Score, are shown in Table 1.

The baseline model exhibits balanced performance

across metrics. Adding self-attention in the model leads

to improvements, with slightly higher PSNR, SSIM, and

CLIP scores, indicating better image quality and semantic

alignment. However, the inclusion of location embeddings

results in a trade-off. While the PSNR and SSIM drop to

14.5957 and 0.2453 respectively, the CLIP score improves

to 0.9373. Finally, the addition of the location matching dis-

criminator in the final model slightly decreases all metrics

although the CLIP score remains relatively high at 0.9261.

This results reveals that while the addition of loca-

tion embeddings and a location matching discriminator en-

hances semantic alignment, it introduces trade-offs in tradi-

tional image quality metrics.

Model PSNR SSIM LPIPS CLIP Score

ESRGAN

+ CLIP+ OSM 15.6481 0.2621 0.4786 0.9227

+ Self-Att. 15.7768 0.2663 0.4624 0.9334

+ Location 14.5957 0.2453 0.4668 0.9373

+ Loc. Disc 14.3973 0.2221 0.4855 0.9261

Table 1. Ablation study results of different model configurations.

S5. Location control

In this section, we evaluate the performance of the lo-

cation control feature in our model, which incorporates ge-

ographic coordinates into the super-resolution process. To

test this feature, we applied SR to the same input image

while varying the coordinates used in the location embed-

dings. We compared the results generated using the orig-

inal coordinates of the input image with outputs produced

using coordinates from different cities in USA, as shown

in Figure 6. These locations were specifically chosen for

their distinct geographic and environmental characteristics.

While the model effectively maintains the overall content of

the images (i.e., shapes, textures, and spatial arrangement

of objects), the only noticeable change when altering the

coordinates is in the hue of the images. The structural el-

ements, such as building shapes and road layouts, remain

consistent across different locations. However, this limited

change in image characteristics reveals a limitation of the

current location control mechanism: it does not fully cap-

ture the regional variations that would be expected when

changing geographic context. These variations could in-

clude differences in architectural styles, natural features,

and other location-specific characteristics, which are not re-

flected in the generated images.
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Figure 1. Sentinel-2 input image of the Malmö region



Figure 2. Super-resolution output from Satlas-SR for the Malmö region



Figure 3. Super-resolution output from Stable Diffusion with ControlNet for the Malmö region



Figure 4. Super-resolution output from our method for the Malmö region



(a) Sentinel-2 (b) Satlas-SR (c) Ours

Figure 5. Comparison of super-resolution outputs for regions of interest from the Malmö inference
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Figure 6. Super-resolution results using different geographic coordinates. The first column shows the output when using the original

coordinates from an area in Germany. The subsequent columns show the results of applying super-resolution with different coordinates in

USA.
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