
Figure 7. Example of masked (training, Eq. (5)) and unmasked (inference, Eq. (6)) window attention on an 8 × 8 window. The window

contains 64 pixels, thus the maps are of size 64× 64. The mask is applied additively before the softmax operation (Sec. 4.3).

Figure 8. Binary masks produced by Otsu [25] and k-means clus-

tering on model feature maps on FMD Confocal Mice [42].

A. Attention mask justification

Opposed to the multitude of methods based on pixel

masking, our approach does not utilize random masks.

More importantly, we do not mask pixels at all. Pixel mask,

unlike our attention mask, has many disadvantages: it im-

plies tuning hyperparameters, increased training time for

multiple forward passes, or slower convergence. Further-

more, masked pixels may appear in the receptive field of

their neighbors in training, thus affecting the denoising.

The attention is a parameter-free matrix, a dot product

between trained embedding projections. Therefore, our at-

tention mask neither hides any trainable parameters nor al-

ters the input but simply cancels attention of each pixel to

itself during training (1.6% of the full matrix). It enables

our model to learn meaningful embeddings through neigh-

boring pixel interaction without collapsing to identity. Dur-

ing inference, the attention scores on diagonal will remain

high despite the masking during training, because they re-

flect pixel self-similarity. Therefore, it is only natural to un-

hide the main diagonal to let the model propagate the signal

directly from each pixel. Fig. 7 illustrates this unblinding

by comparing attention maps.

Figure 9. Binary masks produced by Otsu [25] and k-means clus-

tering on model feature maps on FMD Two-Photon Mice [42].

B. Embeddings analysis

We further investigate the features extracted by SwinIA

in the last transformer block. In Figs. 8 and 9, we con-

tinue the comparison of binary segmentations performed

on the original image with Otsu thresholding [25] and on

the final feature maps of the models with k-means clus-

tering into two clusters. We also include the cluster-

ings of feature maps produced by Noise2Same [37] and

Blind2Unblind [35]. For better comparison, we include the

overlay of model embedding clusterings in these figures.

Compared over two microscopy datasets, clusters on the

embeddings produced by SwinIA are more complete, sharp,

and close to the shape of the cells than those of the counter-

parts. SwinIA also follows image semantics rather than raw

pixel values in its embeddings: on Two-Photon Mice, every

highlighted object is a cell, while for Blind2Unblind [35]

clusters represent either full objects or their subcomponents

depending on their brightness (note that the result is sim-

ilar to Otsu intensity thresholding). It is worth noting that

there is a high similarity between the embeddings of the pix-

els that are far from each other and never participate in the

same attention window. This confirms that the training of



Dataset
Noise2Same Blind2Unblind SwinIA

TT (h) AIT (ms) TT (h) AIT (ms) TT (h) AIT (ms)

Synthetic (sRGB) 4 26 — 35 10 416

Synthetic (grayscale) 2 12 — — 10 239

ImageNet 1 14 25 206 10 554

HànZı̀ 1 5 6 6 10 29

Microscopy 1.5 20 — 32 4 415

Table 6. Comparison of training time (TT) in hours, and average inference time (AIT) on the test set in milliseconds of Noise2Same [37],

Blind2Unblind [35], and SwinIA (ours) on various datasets. For Blind2Unblind [35], we report the results of the experiments that we ran

or re-evaluated ourselves, the code and the weights for experiments with synthetic grayscale noise are missing from the official repository.

Criterion Noise2Same Blind2Unblind SwinIR SwinIA

Number of trainable parameters 5.564M 1.100M 4.610M 3.966M

FLOPs/image 1× 64× 64 (training) 10.002G 19.639G 18.978G 15.890G

FLOPs/image 1× 64× 64 (inference) 5.001G 1.155G 18.978G 15.890G

Table 7. Comparison of the number of parameters and FLOPS between Noise2Same [37], Blind2Unblind [35], SwinIR [19], and

SwinIA (ours). The number of FLOPs is calculated separately for training and inference.

SwinIA is well-regularized and aimed at extracting mean-

ingful image features, equally good in global and local con-

texts. Embedding clusters show our model’s potential as a

universal self-supervised feature extractor for dense down-

stream tasks such as semantic segmentation.

C. Training details

We train SwinIA for 50 000 steps with batch size 64 and

use Lion [4] with one cycle schedule [32] warming up for

15% of steps and then reducing learning rate from 3×10�4

to 10�6. In experiments with FMD, we decrease the num-

ber of steps to 20 000 and the peak learning rate to 10�4,

because the dataset is small. During training, we randomly

cut 64 × 64 crops from images scaled to [0, 1], rotate them

by multiples of 90�, and flip them horizontally and verti-

cally. Each crop is standardized with µ and σ of the train-

ing dataset. During validation, we pad each image for di-

visibility by 32 with reflection and crop the padding after

prediction. For ImageNet in the mixed noise experiment

(Sec. 5.2), we denoised overlapping tiles for several largest

images and stitched them back before evaluation.

We implemented all models in Python 3.8.3 and PyTorch

1.12.1 [27] and trained them on NVIDIA A100 80GB GPUs

(driver version: 470.57.02, CUDA version: 11.4). We used

einops [29] for tensor permutations.

We compare the training time and average inference

time of Noise2Same [37], Blind2Unblind [35], and SwinIA

models in Tab. 6 and show the difference in the number

of parameters and the number of floating point operations

(FLOPs) per grayscale image in Tab. 7.

D. Denoising results visualization

In Figs. 10 to 12, we show additional denoising examples

in experiments with synthetic Poisson noise, mixed syn-

thetic noise, and real-world noise on microscopy data, re-

spectively.

E. Model card

We present a model card with the main information and

technical details about our SwinIA model in Tab. 8.



Figure 10. Denoising examples on ImageNet dataset with mixed synthetic noise [37]. Each row contains noisy and ground truth images,

along with the predictions of Noise2Self [2], Noise2Same [37], Blind2Unblind [35], and SwinIA (ours) models with corresponding PSNR

scores. Each image is center-cropped for visualization.



Figure 11. Denoising examples on sRGB data with synthetic Poisson noise (λ = 30). Each row contains noisy and ground truth images,

along with the predictions of Noise2Self [2], Noise2Same [37], Blind2Unblind [35], and SwinIA (ours) models with corresponding PSNR

scores. Each image is center-cropped for visualization.



Figure 12. Denoising examples on fluorescent microscopy images with natural noise [42]. Each pair of rows contains noisy and ground truth

images from the three used datasets (top — full size, bottom — zoomed in for a better view), along with the predictions of Noise2Self [2],

Noise2Same [37], Blind2Unblind [35], and SwinIA (ours).



Table 8. Model Card of SwinIA.

Model Summary

Model Architecture Fully transformer-based image autoencoder model for end-to-end self-supervised

image denoising with no convolutions. For details, see Sec. 4.

Input(s) The model takes noisy images as input, batch and channel dimensions go first.

Output(s) The model outputs a batch of denoised images of the same shape as input.

Usage

Application The model can be used in self-supervised image denoising for any type of

spatially-uncorrelated synthetic and natural noise on both grayscale and colored

images. Also, it is theoretically possible to use the model in self-supervised pre-

training for extracting features from images for downstream vision tasks.

Known Limitations The model is computationally expensive and requires both powerful GPU hard-

ware and considerable training time. Also, small datasets will most probably lead

to overfitting. Finally, the model will most likely learn an identity function on

the data with spatially correlated noise without proper tuning of patch sizes (as

mentioned in Sec. 6).

System Type

System Description This is a standalone model.

Dependencies None.

Implementation Frameworks

Hardware & Software

Hardware: NVIDIA A100 80GB GPUs (driver version: 470.57.02, CUDA

version: 11.4).

Software: Python 3.8.3, PyTorch 1.12.1 [27], einops [29].

Compute Requirements In every experiment, SwinIA was trained on one NVIDIA A100 80GB GPU for

different numbers of steps (see Sec. 5 for details).

Model Characteristics

Model Initialization The model is trained from a random initialization.

Model Status This is a static model trained on offline datasets.

Model Stats SwinIA model has 3.966 million trainable parameters and performs 15.89

GFLOPS (floating point operations per second) per 64× 64 grayscale image.

Data Overview

Training Datasets

Synthetic noise (sRGB): ILSVRC2012 [6] validation set.

Synthetic noise (grayscale): BSD400 [41].

Mixture synthetic noise: ImageNet [37], HànZı̀ [2, 37].

Natural noise (grayscale): Confocal Fish, Confocal Mice, and Two-Photon

Mice datasets from the Fluorescent Microscopy Denoising Dataset [42].



Evaluation Datasets

Synthetic noise (sRGB): Kodak [9], BSD300 [23], Set14 [39].

Synthetic noise (grayscale): Set12 and BSD68 [30].

Mixture synthetic noise: ImageNet [37], HànZı̀ [2, 37].

Natural noise (grayscale): Confocal Fish, Confocal Mice, and Two-Photon

Mice datasets from the Fluorescent Microscopy Denoising Dataset [42].


	. Introduction
	. Related work
	. Design
	. Methods
	. Input embedding
	. SwinIA model
	. Transformer block
	. Architecture justification

	. Experimental results
	. Synthetic noise (grayscale)
	. Mixture synthetic noise
	. Synthetic noise (sRGB)
	. Natural noise in fluorescent microscopy
	. Ablation study

	. Discussion
	. Conclusion
	. Attention mask justification
	. Embeddings analysis
	. Training details
	. Denoising results visualization
	. Model card

