
Learning To Identify Seen, Unseen And Unknown In Open World: A Practical
Setting for Zero-Shot Learning

A. Dataset Description

For our experiments, we consider three commonly used
zero-shot learning (ZSL) datasets, namely a course-grained
dataset: Animals with Attributes 1 (AWA1) [7] which con-
tains images of different animals like polar bear, giraffe,
seal etc., and three fine-grained datasets: Caltech-UCSD
Birds-200-2011 (CUB) [1] which contains images of dif-
ferent species of birds, Oxford Flowers (FLO) [8] which
consists of images of different kinds of flowers and SUN
attribute [9] which contains images of different scene cate-
gories. It is worth noting that AWA1 dataset provides only
the features extracted using ResNet-101 pre-trained on Im-
ageNet dataset [5] and has not made the images publicly
available. Furthermore, these ZSL datasets originally con-
tain the seen and unseen splits for training and testing. We
modify these datasets for the Open-Set Zero-Shot Learning
(OZSL) by randomly choosing half of the original unseen
classes as unseen classes, and the other half of the origi-
nal unseen classes are taken as unknown samples. The seen
classes are maintained as provided in the original split. As
ResNet-101 pre-trained on the ImageNet dataset is used as
the backbone to extract the visual features, care was taken in
the original ZSL split so that unseen classes are not present
in the ImageNet dataset. Hence, for our experiments as
well, we consider unknown samples only from the original
unseen classes split.

B. Settings and Implementation Details

As proposed in [14], we use ResNet-101, pre-trained on
the Imagenet dataset, as the backbone to extract the visual
features. A Multilayer perceptron (MLP) with one hidden
layer and with ReLU activation is used as the encoder and
decoder for both modalities for all the two stages. Fur-
ther, the hidden layer dimension is fixed at 512, and the
latent dimension is fixed at 64 for both modalities. More-
over, the classifiers in the latent space of both stage I and
stage II follow a linear LogSoftmax architecture. Stage I
classifier is used to classify seen class samples, and Stage
II classifier is used to classify unseen class samples. Fur-
thermore, inspired by [2, 4, 15] we use von Mises-Fisher
(vMF) distribution as the prior and the posterior distribu-

tion in the VAE modules as it enhances the representation
power by using a hypersphere as the latent space. Adam
optimizer with a learning rate of 10−4 is used for train-
ing the model. As suggested in [2], we set λcr and λcls

to 1 and Wasserstein distance weight λ as 0.1 for both
stages. Stage I is trained using the seen class train data.
GSM-Flow [3], a state-of-the-art ZSL approach, is used
to generate synthetic samples for unseen classes for train-
ing Stage II. Further, while training Stage II, the weight
of the proposed distribution retainment loss is set to 0.1.
We implement our model using PyTorch. All our exper-
iments are run on RTX 3090 GPU cards. We report the
average results of the methods on five random unseen-
unknown splits. It is important to note that the ECCV
version of [2] followed the version of benchmark dataset
in which there was a leakage of train seen data and test
seen data (https://drive.google.com/file/d/
1p9gtkuHCCCyjkyezSarCw-1siCSXUykH/view).
The archive version of [2] provides the results with the fixed
benchmark datasets.

B.1. Threshold Determination For Inference

As we don’t have the actual visual features for the un-
seen classes and the unknown samples during training, and
the generated synthetic unseen samples are only an approx-
imation of the actual unseen samples, directly determining
the threshold is difficult. Hence, we use one random split
to determine the threshold value and use the same threshold
value for other random splits for each dataset. For Stage
I, We set γI as 0.98, 0.7, 0.85, 0.5 for AWA1, CUB, FLO
and SUN Datasets respectively. Furthermore, for Stage II,
we set γII as 0.98 for AWA1 and 0.65 for CUB, FLO and
SUN datasets. It is interesting to note that course-grained
datasets have a higher threshold and fine-grained datasets
have a lower threshold. This is because, it is easier to distin-
guish samples of different classes in course-grained datasets
as compared to fine-grained datasets.

B.2. Illustration of Threshold

As can be seen in Fig. 1, the proposed model is trained
such that the unseen class samples are clustered around the
unseen class attributes, whereas the unknown samples are



Figure 1. Illustration of unknown sample detection using the t-
SNE plot of Stage II latent sapce for CUB dataset. The big red dots
denote the attributes, the bule dots detnote the unseen class clusters
and the scattered orange points denote the unknown samples.

scattered across the latent space. If a sample lies closer
to the unseen class attributes, then it is categorized as un-
seen whereas if it lies further away from the unseen class
attributes, it is categorized as unknown. The threshold de-
termines the class boundary by setting how close a sample
must lie near the unseen class attributes for it to be con-
sidered as unseen. In our approach, we use cosine simi-
larity as the distance metric. As the sample from the Tree
Sparrow class (unseen class) lies inside the class bound-
ary (closer to the class attribute vector) it is identified as
Unseen. Whereas, the sample from the Savannah Sparrow
class (Unknown class) lies outside the class boundary and
is flagged as unknown.

C. Baselines
We compare our proposed method to the following base-

lines, which are broadly from the following three categories,
namely Zero-Shot Learning (ZSL), Open-Set Recognition
(OSR) and Open-Set Zero-Shot Learning (OZSL). For the
baselines from the ZSL category, we consider the state-of-
the-art generative method, namely GSMFlow [3]. GSM-
Flow is a flow-based generative ZSL approach that gener-
ates synthetic samples for the unseen classes based on the
unseen class attribute vectors. For the baseline from the
OSR category, we consider MSP [6], ViM [13], KNN [11].
MSP is a simple threshold method that determines whether
a sample is from the seen category or unknown based on a
threshold on the softmax probability predicted by a classi-
fier. ViM and KNN perform OSR by determining the prob-
ability a sample is unknown. Finally, for the baseline from

the OZSL category, we consider the proposed naı̈ve ap-
proaches, namely GSMFlow-Threshold, GSMFlow-ViM,
GSMFlow-KNN. GSMFlow-Threshold is based on (MSP)
[6] wherein we apply a threshold on the maximum simi-
larity score predicted by GSMFlow to determine whether
a sample is from in-distribution (seen + unseen) or out-
of-distribution (unknown). If the sample is determined to
be from in-distribution, then it is assigned the class for
which it has the maximum similarity score. GSMFlow-
ViM and GSMFlow-KNN applies ViM [13] and KNN [11]
on the seen class train data and the synthetic unseen class
data generated by GSMFlow in order to estimate the prob-
ability a sample is from out-of-distribution. Additionally,
we also consider Contrastive Language-Image PreTraining
(CLIP) [10]. However, CLIP is not originally designed for
our setting as it is pre-trained on instance-level textual infor-
mation, whereas other baselines and our proposed method
are trained on a single description for each in-distribution
class. Nevertheless, the pre-trained CLIP can still be used
for ZSL. Likewise, CLIP-threshold is an extension that em-
ploys a threshold to the cosine similarity measure and can
be used for OZSL. Lastly, a variant of CLIP, called CLIPN
[12], is designed to handle unknown samples in the OZSL
setting. As proposed in [12], we consider the ‘Agreeing to
Disagree’ strategy for CLIPN.

D. Generator Description

As discussed in Section B, we use GSMFlow [3] as the
generative model for generating synthetic samples for un-
seen classes. GSMFlow is a state-of-the-art flow based gen-
erative method that tries to address the following generation
shifts, namely i) Semantic Inconsistency, ii) Variance Col-
lapse and iii) Structure Disorder, in order to generate better
synthetic samples. GSMFlow is first trained on the seen
class train data conditioned on the corresponding seen class
attribute vectors. Once trained, we condition a random vec-
tor sampled from the normal distribution with unseen class
attribute vectors and pass it to the GSMFlow model to gen-
erate the synthetic samples for the unseen classes.

E. Source Of The Image In The Illustration

The example illustration image used in Fig.1 of the main
paper is obtained from chatGPT4 using the prompt ”Gen-
erate a photo-realistic real world scenario consisting of a
bicycle, motorcycle and a cat”



F. The standard VAE Loss
The standard VAE loss for the Visual and attribute VAE

module can be written as:

LF
VAE = log pDF (x|zx)− λd(qEF (zx|x)∥qEA(za|a)),

(1)

LA
VAE = log pDA(a|za)− λd(qEA(za|a)∥qEF (zx|x)),

(2)

where x and a are the visual features and the correspond-
ing class attributes of a training instance, respectively; zx
and za denote the latent variable of the visual and attribute
VAE modules, respectively. Furthermore, qEF (zx|x) and
qEA(za|a) are the posterior distributions of the visual and
attribute VAE modules, modeled by the visual encoder EF

and the attribute encoder EA, respectively. Meanwhile,
pDF (x|zx) is modeled by the decoder network DF of the
visual VAE module, while pDA(a|za) is modeled by the de-
coder network DA of the attribute VAE module. Note that,
in the two losses, the first term represents the reconstruction
error of a single modality (visual features and attributes, re-
spectively); the second terms represents the alignment er-
ror across the two modalities. Here, d(·∥·) measures the
Wasserstein distance between two distributions, and λ is a
hyperparameter balancing the two terms.

G. VAE Based visual and Attribute Module
As discussed in Section B, we use von Misses-Fisher

(vMF) distribution as the prior and posterior distribution for
our VAE-based visual and attribute module. The VAE mod-
ule models the latent space by predicting the mean µ and the
concentration parameter κ of the vMF distribution. Fig. 2 il-
lustrates various losses used in our model. LR denotes sim-
ple reconstruction loss where the decoder must reconstruct
the input feature from the latent variable z sampled from the
vMF distribution with parameter µ and κ predicted by the
encoder. Lcr denotes the cross-reconstruction loss where
the latent variable sampled from one module is passed to
the decoder of the other module to reconstruct the corre-
sponding input feature of that module. Lw denotes the loss
that minimizes the Wasserstein distance between the latent
space of the visual module and the attribute module. Lcls is
the classification loss applied to the latent space of the two
modules. It is interesting to note that stage I is trained using
the seen class visual train data and the corresponding seen
class attributes. However, since we do not have any visual
train data for unseen classes, stage II is trained using syn-
thetic unseen class samples and corresponding unseen class
attributes.
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