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Figure 1. PatchMix: Standard CutMix poses an issue in Elas-
ticViT training regime, as proportions of mixed targets may
change in randomized sampling. TokenMix replaces patches af-
ter sampling, incidentally eliminating this issue, but nevertheless
relies on grid sampling. Our PatchMix takes full advantage of the
ElasticViT position and scale encoding, and enables mixing of ran-
domly sampled patches of different scales.

1. Additional experiments
1.1. PatchMix ablation

To evaluate the effectiveness of PatchMix (see Fig. 1 for
visualization) we perform an ablation study, training the
model with the regime presented in Sec. 4 of the main pa-
per, but without the PatchMix augmentation applied. The
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Table 1. PatchMix ablation study: The effectiveness of the
PatchMix augmentation evaluated on the Imagnet-1k dataset. The
test was performed without any introduced perturbations. We ob-
serve that PachMix provides over 1.5% gain in accuracy.

results are presented in Tab. 1. The PatchMix augmenta-
tion improves the accuracy of ElasticViT by over 1.5% on
ImageNet-1k.

1.2. Grid density

Continuing on scale elasticity experiments presented in
Sec. 5.1, we decided to investigate the resistance of ViT
architectures to change of grid density. In real-world sce-
narios, scale changes are quite common. However, when
conducting synthetic experiments with ViT, the typical ap-
proach is to maintain a consistent input image resolution
and grid layout density.

In this setup, we adjust the grid density, thereby altering
the number of patches while using the same input image.
This modification process is illustrated in Fig. 2 as Grid
density and compared to the Grid zoom perturbation shown
in Sec. 5.1. The outcomes for standard ViT, MAE and Elas-
ticViT are presented in Fig. 3. PVT and Swin models were
omitted in this evaluation, as changing the grid density in
those models is not trivial due their internal structure. We
observe, that all models perform similarly well when de-
creasing the density of the grid, while only ElasticViT can
utilize denser sampling to its advantage.
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Figure 2. Scale elasticities: We use two perturbation scenarios,
that change the size of a patch in a grid. The first (grid density)
changes the number of patches. The second (grid zoom) keeps
same number of patches but changes theirs size.
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Figure 3. Grid density: The impact of changing the grid density
(see Fig. 2) on accuracy. ElasticViT can utilize extra information
from denser grid sampling (0.5), outperforming the original ViT.

1.3. Is it better to down-scale input or dropout
patches?

The results from our previous experiments naturally lead
to an important question: When faced with computational
constraints, is it more beneficial to remove an entire patch
from the input or to rescale neighboring patches in order
to maintain complete image coverage, even at the cost of
changing the token scale? To investigate this, we conduct
experiments where we iteratively select a random 2 x 2
patch block from the uniform 14 x 14 patch grid and modify
it in two ways. The first is to replace a 2 x 2 block of patches
with a single larger patch, preserving the same coverage. In
the second, we remove three out of four patches within the
block. In both cases, these operations reduced the input to-
ken set by three, either through a dropout operation or by
changing the scale of the patches.

The results of these experiments are depicted in Fig. 4.
Surprisingly, ElasticViT exhibits almost no discernible dif-
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Figure 4. Reducing number of patches: Evaluation of the trade-
off between lower resolution sampling and patch dropout. The X-
axis represents the number of 2 x 2 patch blocks either replaced by
a single lower-resolution patch or kept with only one patch while
dropping the rest. We observe that the chosen strategy only affects
ViT significantly at a high number of replacements, whereas Elas-
ticViT remains unaffected due to its greater elasticity in handling
missing data.

ference in performance between the dropout and rescale op-
erations, with dropout slightly outperforming rescaling at
the extremes. Again, This would suggest a potential overfit
with results better when having only 25% of the image cov-
ered by patches than having 100% coverage but with two
times lower sampling resolution. In contrast, for the origi-
nal ViT model, there is a visible distinction in performance
between the two methods of limiting token counts, with the
rescaling option proving to be a much more effective solu-
tion at the extremes.

1.4. Transfer learning (continued)

1.4.1 Pascal VOC dataset

In this section we show additional results for transfer learn-
ing elasticity, evaluated on the Pascal VOC dataset. We fol-
low the same training and evaluation setup as in Sec. 5.7 of
the main paper. Results of the experiments are presented
in Fig. 5. We observer, that standard ViT performs the best
for the native resolution, but is outperformed by ElasticViT
when elasticity is introduced. Both PVT and Swin performs
slightly worse, and surprisingly, the self-supervised pre-
trained MAE performs the worst, failing to achieve event
half of the mean average precision score of ViT and Elas-
ticViT.
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Figure 5. PASCAL VOC transfer learning: Results of fine tun-
ing the last layers of models for multi-label classification of the
PASCAL VOC 2007 dataset. All models were trained with stan-
dard grid sampling. We observe, that for high perturbation rate
ElasticViT outperforms baselines. Note the surprisingly poor per-
formance of the self-supervised pre-trained MAE.

Model Sampling type Accuracy
ViT GRID 82%
ElasticViT EDGE 87%

Table 2. ColonCancer transfer learning: Results of fine-tuning
the last layers of models for binary classification of the Colon-
Cancer dataset. The standard ViT model was run with grid sam-
pling, while our ElasticViT model utilized EDGE sampling as de-
scribed in the main paper. We observe that our model outperforms
the standard ViT, benefiting from variable scale sampling.

1.4.2 ColonCancer dataset

We further test transfer learning properties of our model,
evaluating it on the ColonCancer dataset. The dataset con-
sists of histopathological images to be classified as malig-
nant or benign. As previously, we train only the final linear
layer of the model. For standard ViT we apply regular grid
sampling, our ElasticViT uses EDGE sampling as described
in the main paper. Results are presented in Tab. 2, showing
superior performance of ElasticViT. We attribute this supe-
rior performance to EDGE sampling, which extracts more
patches in regions containing cell nuclei, enabling Elas-
ticViT to create a better representation of the data.
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tiple runs: The histogram represents the distribution of classifica-
tion error for five inference runs with different random seeds used
for elastic sampling. We observe that the differences between runs
are insignificant. Note that the accuracy scores of particular runs
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Figure 6. Elastic sampling impact on performance across mul-
are provided in the plot legend.

1.5. Stability of elastic evaluation

As our elasticity benchmark introduces randomness, we
run the evaluation pipeline on the same trained model mul-
tiple times to check for any fluctuations in performance
across different random seeds. The differences in perfor-
mance are insignificant over multiple runs of elastic sam-
pling, as shown in the histogram of performance standard
deviations in Fig. 6. This consistency can be attributed to
the large size of the ImageNet-1k validation set.

1.6. Patch redundancy

Elastic sampling allows for patch overlap, which pro-
vides redundant information to the model. In this exper-
iment, we explored vision transformer capability to deal
with redundant information. The model was provided with
a standard full grid of 16 x 16 patches, that covered the
entire image. Then, a number of redundant, randomly sam-
pled patches with scales between 0.5 and 2 was added to the
input. The results are presented in Fig. 7. We observe, that
for standard ViT and MAE models those redundant patches
essentially constitute noise, which reduces the overall per-
formance. Our ElasticViT is capable of using the extra in-
formation to slightly increase the accuracy.

1.7. Overall performance comparison

To assess the overall elasticity of the compared methods,
in Fig. 8 we present a critical difference diagram, aggregat-
ing results from Fig. 4 and Fig. 5 of the main paper.
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Figure 7. Patch redundancy: The impact of adding randomly
sampled patches in addition of a standard sampling grid. We ob-
serve, that standard ViT and MAE lose performance, as those ran-
domly sampled patches as treated as noise. In contrast, ElasticViT
can utilize the extra information to improve the result.
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Figure 8. Critical difference diagram: Average performance
ranking of ElasticViT and baseline methods for ImageNet with
high perturbation (most extreme settings). ElasticViT significantly
outperforms remaining approaches, while more structured meth-
ods (PVT and Swin) perform significantly worse than simple ViT.
Moreover, the difference between ViT and MAE is insignificant.
Notice that this diagram was generated for rankings generated
based on results from Fig. 4 and Fig. 5 of the main paper.

2. Pipeline visualizations

In Fig. 9 we present visualization of our elasticity
pipeline output. For clarity, patches are separated with red
borders and patch overlap is highlighted in bright colors.

3. Theoretical analysis of input sampling
strategies and their impact on positional
embedding

3.1. Definition recall

To strictly define the evaluation pipeline, let us con-
sider image I for which we generate set P of patches
p = (x,y, s), where x and y denote the top-left corner’s co-
ordinates, and s represents the relative scale (i.e. we sample
apatch r - s X r - s and rescale it bilinearly to size r x r).

Initially, the coordinates = and y are from the regular grid
and s = 1. However, in the next step, we perturb them with
three functions corresponding to the considered elasticities:

* Egcale(s;,s5)(P) - introduces the scale perturbations,
sampling the s parameter of every patch p € P in-
dependently and uniformly from range [s1, sa].

* Emiss(d)(P) - adds missing data perturbations, drop-
ping out d patches from P randomly with equal prob-
ability.

* Epos(q)(P) - applies positional perturbation, modify-
ing x and y parameters of each patch p € P, inde-
pendently moving them by offsets sampled uniformly
from range [—r-q, r-q], where r is the size of the patch.

The patches are described by their upper left (x,y) and
lower right corner (x + rs,y + rs). Then each coordinate
pos € {x,y,z + rs,y + rs} is encoded by the sinusoidal
positional encoding:

. pos
PE(pOS,m) = sin (71000022_/1)

pos )

PE(pos,2i+1) = cos (W

which are concatenated into a single vector.

3.2. Perturbations influence on positional embed-
ding

The application of E;ss does not affect the positional
encoding of a patch. However, if a patch was not dropped
by the E,,;ss perturbation, then the other two perturbations
can modify its position embedding.

After application of E,., the values of x and y get up-
dated to x + Ax, y+ Ay, while the lower right corner z+17s
and y+rs get updated to values x+rs+Ax and y+rs+Ay.
The offset values Az and Ay do not depend on z nor y.
Thus, for x, we obtain the following positional embedding

PE N = sin r + Az
(e+Aw,2) = 1000021 " 1000024/

PE = > e~
(z+Az,2i+1) = COS 100002/ + 100002/ )’

which holds analogously for the other three coordinates
{y, 2+ s,y +rs}.

When it comes to Eg.,1c, it modifies the s value to s +
As therefore pos € {z,y} remains unchanged, while both
coordinates pos € {z + rs,y + rs} are offset by the value
A = rAs. The formula is analogous to the E case.
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Figure 9. Elasticity pipeline visualization: In this figure, we present visualizations of successive input data perturbations. For clarity,
patch borders are marked in red, and patch overlap is highlighted.



