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A. Organization of supplementary

This document presents additional comparisons and results.

First, we compare with text-based diverse editing using a

text-to-image editing method built on the Stable Diffusion

model [12] in Sec. B. Next, we provide details for dataset

creation in Sec. C and implementation details in Sec. E and

F. We provide results analysis of adding the same direction

for multiple images in Sec. G and additional comparisons

with existing attribute editing methods in Sec. H. Finally,

we present additional results for diverse editing, coarse-

to-fine editing, and in 3D face attribute variations. Please

check the attached website (

B. Comparison with text-to-image editing [10]

We compare our proposed method for diverse attribute ed-

its with a recent text-to-image editing method [10]. The

approach involves generating localized object shape varia-

tions using a pre-trained text-to-image Stable Diffusion [12]

model. Specifically, the prompt-mixing technique allows

the exploration of plausible variations for a given object

shape that switches text prompts at different stages of de-

noising. To perform localized variations, they segment out

the object using internal self-attention and cross-attention

layers.

To compare for attribute variations, we first perform an

eyeglass edit on the source image using the single-direction

StyleGAN editing method InterFaceGAN [13] and obtain

one version of the edit. Next, we invert this edited image in

the Stable Diffusion using null-text inversion [8]. We gen-

erate diverse eyeglass variations by providing the following

eyeglass types: brownline, cat-eye, double-bridge, mirror,

narrow, oval, retro, rimless, round, square. The results are

present in Fig. 1. We can observe that the text-based editing

method is ineffective in generating diverse eyeglass varia-

tions compared to our proposed approach. Moreover, get-

ting a fine-grained control for the exploration of diverse at-

tribute shapes is not possible with a text-conditioned editing

*Equal contribution

method, suggesting the importance of our proposed coarse-

to-fine sampling for attribute exploration.
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Figure 1. Comparison with text-to-image editing method [10]

for diverse eyeglass editing that generates localized object shape

variations by giving multiple prompts. We first embed a source

image and edit it using InterFaceGAN [13] for eyeglasses. Next,

we embed the edited image using null-inversion in stable diffu-

sion and generate diverse eyeglass styles with prompt-mixing as

proposed in [10]. This approach generates limited eyeglass shape

variations, whereas AttributeDiffusion generates a large variety of

eyeglasses. Moreover, our coarse-to-fine sampling enables us to

explore these variations in a principled manner, which is challeng-

ing with text-based control.
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C. Dataset Details

Our method requires a paired dataset of images with and

without attribute edits for training. These image pairs can be

easily obtained using any existing attribute editing methods,

generating a single edit for the source image. To validate

the robustness of our proposed method to the method used

for generating paired data, we tried various off-the-shelf

editing methods for data generation. Specifically, we used

GAN latent space-based editing methods StyleCLIP [11]

for hairstyles/cars edits, and encoder-decoder based edit-

ing methods - SAM [3] for aging, Latent-composition [4]

for smile and eyeglasses and Swapping autoencoders [9] for

church style editing. Our method performs good quality di-

verse edits when trained on the paired dataset obtained by

all the approaches, proving the generalizability of our ap-

proach. Next, we will provide details of these methods.

StyleCLIP [11]. We used StyleCLIP to generate an

edited paired dataset for hairstyle and car edits. Specifi-

cally, we trained StyleCLIP [11] mapper with text prompts

“bangs hairstyle”, “mohawk hairstyle”, “curly hairs”, “afro

hairstyle”, “buzz cut”, and “bob cut” for hairstyles. Post-

training, we use the trained StyleCLIP models to perform

hairstyle edits on a subset of CelebA-HQ [6]. Examples

of source and edited images are shown in Fig. 2. We cre-

ate a dataset of 30K image pairs (edited and source) for

each text prompt. We obtain a combined set for hairstyle

variations consisting of 160K synthetic image pairs each.

For car edits, we trained StyleCLIP models with the text

prompts ‘sports car’ and ‘classic car’ and used them to edit

10K synthetic images generated by StyleGAN2 trained on

cars. The obtained dataset is used to train the DDPM model

to learn diverse edit variations.

SAM [3]. For the age attribute, we used SAM [3], a state-

of-the-art age editing method, to generate image pairs with

age editing. SAM is trained with an additional encoder

model on StyleGAN2, conditioned on a given target age, to

achieve fine-grained control over the age edit. The encoder

is guided by the age regression and reconstruction losses to

obtain precise age editing. To obtain a paired dataset, we

use age 60 as the target value and perform edits on 30K

source images from CelebA-HQ.

Swapping autoencoders [9] is an autoencoder-based

method specifically designed for image manipulation. The

core idea is to project the input image into two disentangled

latent components controlling structure and texture. The la-

tent components of the source images can be swapped with

other images’ texture and structure components to obtain

the desired edits. We swap the texture code with a randomly

sampled image to generate texture variations for churches

while preserving the structure of the image. We first gener-

ate 30K images from StyleGAN2 trained on churches and

edit them using swapping encoders.

Eyeglasses
PositiveNegative Inversion PositiveNegative Inversion

Negative Positive Negative Positive Negative Positive

Cut-paste augmentations

Image Pairs obtained using existing single-edit methods

Smile

Figure 2. Examples of synthetic image pairs. (Top) We present

positive and negative image pairs generated by cut-pasting the at-

tribute region leveraging smooth StyleGAN priors [4]. The aug-

mented positive image is passed through the encoder and Style-

GAN2 to obtain smooth inversion. (Bottom) Example image pairs

generated by single direction editing method StyleCLIP, given the

text prompts ”bangs hairstyle”, ”mohawk hairstyle”, and ”curly

hairs.” Note that the latent encodings of the negative and positive

images are used to obtain the edit directions in the W+ latent

space.

Latent composition [4]. For generating images for smile

and eyeglass attributes, we used a simple editing method

based on cut-pasting the desired attribute region on the

source image, leveraging the latent composition properties

of GANs [4]. The augmentations generated by cut-pasting

can be realistically composed by passing them through a

pretrained encoder and StyleGAN2 model (Fig. 2) sequen-

tially. Specifically, we sample a set of ‘positive’ images

Xp with attribute a from the CelebA-HQ dataset using the

attribute annotations from CelebA. We sample a set of ‘neg-

ative’ images Xn that does not have the attribute a. Then

we sample an image from xn ∈ Xn and xp ∈ Xp, mask the

region of interest/part of the face containing a from xp, and

paste it onto xn. For example, we used the mouth region

for the smile attribute, while for eyeglasses, we used eye-

glass regions to perform cut-paste augmentation (Fig. 2).

When passed through the e4e encoder and StyleGAN2 gen-

erator, these augmented images are blended due to smooth-

ness prior to the StyleGAN2 generator. To obtain part

segmentation masks, we use a few-shot segmentation net-

work [15], which uses StyleGAN features to perform seg-

mentation. Specifically, we used five ground truth segmen-

tations from CelebAHQ-Mask [7] to train the few shot seg-

mentation models.

D. Ablation Study

Diversity parameter γ. We performed ablation over the

diversity parameter γ, for a set of edit directions in Fig. 3.

However, for large γ values, the edits also affect other at-

tributes. As we increase γ, we can observe that the diversity
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Figure 3. Eyeglass edits for three different values of diversity pa-

rameter γ. For a lower value of the parameter (γ = 4), the varia-

tion in eyeglasses is lesser. A higher diversity parameter (γ = 20)

distorts the person’s identity. A moderate value of γ = 12 gener-

ates diverse eyeglasses and maintains the face identity.
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Figure 4. Eyeglass edits for three different strength parameter

values λ. For a lower value of λ = 0.25, the eyeglasses added

are transparent with thin frames, while for a higher λ = 2.0, the

frames are thicker with a dark tint, but the identity of the person is

not preserved. For λ = 0.75, the eyeglasses added are prominent,

and the person’s identity is unaffected.

of eyeglass shapes and lenses increases.

Strength parameter λ. We also performed ablation over

the strength parameter λ on a set of edit directions, which is

visualized in Fig. 4. It can be observed that the attribute be-

comes more prominent with an increase in λ until a thresh-

old, beyond which the person’s identity starts getting modi-

fied.

E. Model architecture

We implemented our denoising network as an MLP net-

work with 10 fully connected layers with 2048 neurons in

each layer. Additionally, we added a time conditioning by

first encoding the timestamp with 128 dimensional posi-

tional encoding. The encoded time embeddings are passed

through another MLP network of two fully connected lay-

ers with 256 neurons each. Time conditioning is added to

all hidden layers of the base MLP network. A skip con-

nection is added after each linear layer, followed by a layer

norm layer. Layer norm is not added in the final layer.

F. Computational requirement

We performed all our experiments on a single NVIDIA

A5000 GPU. The training time of the DDPM model on a

dataset for latent directions is 1 hour on a single GPU for a

batch size of 64, although 3-4 such models can be trained

on a single A5000 at a time since the runs require less mem-

ory.

G. Adding same edit direction on multiple in-

puts

To analyze the generalization capability of the edit direc-

tions for different editing, we perform editing with a single

direction on multiple source images. Specifically, we sam-

ple a set of edit directions from a trained diffusion model for

hairstyles and eyeglasses and perform edits on six source

images as shown in Fig. 5. Editing with a direction gener-

ates similar styles in all the source images. For example,

for hairstyles, d1 generates curly hair, d2 generates bangs,

and d3 generates a mohawk hairstyle. Observe that simi-

lar frame shapes are generated for each eyeglass direction.

For eyeglasses, d1 generates ellipse-shaped frames, d3 gen-

erates similarly shaped yet thicker frames, and d2 generates

round-shaped frames.

H. Comparison with single-direction based

editing methods

We compare edits generated by our method against three

state-of-the-art single-direction based editing methods: In-

terfaceGAN [13], StyleCLIP [11], StyleFlow [2] and

CLIP2StyleGAN [1]. Note that these methods can generate

a single edit w.r.t. an attribute for a given image, whereas

our method is trained to generate multiple edits w.r.t. an

attribute. StyleFlow uses normalizing flows conditioned on

the attribute classifier scores to map a source latent code

to an edited latent code. CLIP2StyleGAN learns disentan-

gled directions in the CLIP space and transfers them into

StyleGAN latent space for attribute editing. We performed

editing to generate a single output for eyeglasses, smile, and

age attributes using all these methods. We present the com-

parison results in Fig. 7. For CLIP2StyleGAN, we have

generated results for only smile and eyeglasses attributes

as CLIP2StyleGAN could not find disentangled edit direc-

tions for age. Our method achieves edits with high real-

ism and disentanglement with superior identity preservation

ability even with a single-directional edit. StyleFLow also

achieves good edits with attribute disentanglement. How-

ever, StyleFlow requires additional attribute classifiers to

obtain attribute scores, which are required as input to edit

any new input image.

Additionally we compare with CLIP2StyleGAN and

StyleFLow for generating multiple outputs by changing the

strength of the edits in Fig. 6. We can observe that the
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Figure 5. Editing multiple source images with the same direction.

Each row, other than the source row, results from editing six differ-

ent source images using the same edit direction di, sampled using

the appropriate DDPM model. We present results for hairstyle ed-

its on top and eyeglass edits at the bottom. Observe that for each

edit direction, an attribute edit of a similar style is generated for

all the source images.

edits generated by both baselines have limited diversity.

As we increase the edit strength, the identity of the sub-

ject changes in CLIP2StyleGAN. StyleFlow achieves bet-

ter identity preservation in both edits but requires attribute

classifiers during inference. Our method generates highly

diverse and realistic attribute edits with superior identity

preservation. This explains the need for methods that can

model diverse attribute edits.
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Figure 6. Comparison for diverse attribute edits with single

direction-based editing methods - CLIP2StyleGAN [1] and Style-

Flow [2]. The variations in CLIP2StyleGAN and StyleFlow are

generated by increasing the edit strength.
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Figure 7. Qualitative comparison with single direction meth-

ods. StyleCLIP and CLIP2StyleGAN change the identity in age

and eyeglass edits, respectively. InterFaceGAN entangles hair

color with eyeglass attribute edits. StyleFlow changed the hair

color while age editing. The proposed method can generate realis-

tic edits without altering other attributes.

Table 1. Quantitative comparison with single direction meth-

ods. We compare Cosine Similarity (CS) and Euclidean Distance

(ED) between the face embeddings of the source and edited im-

ages to measure identity preservation. FID is reported to evaluate

the realism of edits. The proposed method outperforms state-of-

the-art methods in all the metrics.

Metric InterFaceGAN StyleCLIP CLIP2StyleGAN Ours

Eyeglasses

FID 80.49 69.66 73.41 66.65

CS 0.953 0.950 0.944 0.958

ED 0.47 0.49 0.51 0.41

Smile

FID 78.59 65.42 72.25 64.68

CS 0.883 0.949 0.920 0.960

ED 0.736 0.439 0.616 0.428

Age

FID 99.86 77.83 - 71.62

CS 0.905 0.878 - 0.921

ED 0.58 0.75 - 0.54



Figure 8. Diverse attribute edits for eyeglasses, smile, and hairstyles.

Eyeglass variationsInversionOriginal
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Figure 9. Diverse attribute edits on real images. Given a real image, we encode it using e4e [14] encoder and perform diverse attribute

editing on the obtained latent code.



I. Additional Results

We present additional results for diverse attribute editing on

real and synthetic images in Fig. 9 and Fig. 8, respectively.

For real images, we first invert the input image into W+

latent space using e4e [14] encoder model. The proposed

method can generate diverse and realistic attribute varia-

tions for both real and synthetic datasets. Additionally, we

present results for diverse editing on car styles and church

styles in Fig. 10.

I.1. Hierarchical sampling for attribute variations

We present results for proposed coarse-to-fine sampling

of diverse attribute edits in Fig. 12 for faces and in Fig. 13

for cars and churches. Observe the similarity and nuanced

changes within the fine variations and structural diversity in

the coarse variations of the outputs.

J. Editing on 3D faces

We present diverse attribute editing results on 3D aware

GAN, EG3D [5]. We request the reader to check the ac-

companying website (web.html) to check out the edits from

different viewpoints. The proposed method can generate di-

verse attribute edits that are 3D consistent and preserve the

identity. We present results for editing in 3D along with the

surface maps of the edited geometry in Fig. 11. We want to

highlight that the surface maps are not perfect, as the EG3D

model models the geometry in a smaller resolution than the

image resolution. Observe that the shape of eyeglasses and

hairstyles are changed with diverse edits as visible in the

surface maps.



Figure 10. Diverse attribute edits for car styles - sports car and classic car and church styles.

Figure 11. Diverse eyeglass variations for 3D aware GANs. Our method can generate 3D consistent, diverse variations for eyeglasses

using the latent space of EG3D backbone. We show a side view and the obtained 3D geometry after editing the face in the inset. The edited

image has high fidelity and preserves identity and other attributes. Notably, the edits result in a change in the geometry of the face (inset).

Interestingly, in the second example, we generate variations for eyeglasses even if the subject is already wearing eyeglasses.
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Figure 12. (Zoom in to appreciate fine variations) Hierarchical attribute editing in a coarse-to-fine manner. Given a source image, we first

obtain two coarse edit directions for a given attribute (eyeglass/hairstyle). Next, we sample finer variations for a coarse style, preserving

other facial attributes and the subject’s identity. In the first example, the fine variations generate diverse transparent eyeglasses with variety

in the frame shape. The second example shows diverse frame shapes and colors for a given reference coarse variation. In the third example,

diverse hairstyles are generated.
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Figure 13. (Zoom to appreciate fine-variations). Hierarchical attribute editing for cars and churches in a coarse-to-fine manner. (Top) We

present car style edit variations for ‘Classic car’ and ‘Sports car’ edits. Given a source image, we generate two diverse coarse variations

for each car style. Next, finer style variations are generated, which can be observed as subtle changes in the headlamp and side windows of

the cars, as highlighted in boxes. (Bottom) We first generate diverse coarse textures for churches with the same layout. Next, finer texture

variations are generated for the selected coarse texture.
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