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Table 1. Comparison of trainable parameter count.

F Framework Parameters (M)

AdaCoF [6] [7] 2.6
Ours 0.043

CAIN [1] [7] 4.7
Ours 0.043

VFIT [13] [7] 3.0
Ours 0.043

1. Additional Experiment Results

1.1. Training Parameters

Our framework enjoys a simple ‘plug-and-play’ design
that only requires the training of auxiliary D-map estima-
tor E to make existing VFI networks F robust to discon-
tinuities. This is in comparison to [7] which requires the
training of both E and F . Table 1 show the difference in
trainable parameters of the two frameworks when applied
to various F . Regardless of the F used, our framework re-
tains an equal parameter count across all F . Furthermore,
compared to [7], our framework employs a lightweight D-
map estimator design to drastically reduce the number of
trainable parameters and hence, resulting in a shorter train-
ing time.

1.2. Computational Complexity of the D-map Esti-
mator

Due to the design of our D-map estimator E , the appli-
cation of our framework greatly increases the computation
overhead. As seen in Table 2, the addition of the D-map es-
timator generally increases the total computation by around
four-folds across all datasets. To reduce the computation
cost, we propose using down-scaled inputs for the ECG
within the D-map estimator E . The role of the ECG in E
is to provide supervision based on the coherence proper-
ties across the four input frames. The coherence map Mc,
extracted from ECG, offers explicit guidance to the E in

discerning discontinuous areas. This coherence map pri-
marily determines values based on segmented components
in the scene, making it less dependent on pixel-level accu-
racy. Therefore, adequate guidance can still be achieved
at a lower resolution. This is highlighted through the re-
sults in Table 2 where down-scaled inputs for the ECG have
minor impact on the framework’s performance. The frame-
work’s performance remain robust even when the inputs are
down-scaled to 1/8 its original size for the ECG. On the
other hand, reducing the spatial resolution drops the com-
putation cost by large margins. At ×8 down-scaled inputs,
the computation cost is reduced by 1/2 of its original total
cost, making this a favorable trade-off.

1.3. Quantitative Comparison

We compare against baseline versions of AdaCof [6],
CAIN [1], EMA-VFI [16], VFIT-B [13], as well as pre-
vious VFI methods such as DVF [17], SuperSlomo [3],
Sep-Conv [10], Softsplat [9], ABME [11], RIFE [2], IFR-
Net [5], CBMNet [4] and SGM-VFI [8]. For [7] and Ours,
we report the scores using VFIT-B for all comparisons be-
low. Experiment results in Table 3 show that VFIT-B en-
hanced with our framework displays unrivaled results in
the GDM dataset, achieving state-of-the-art results. No-
tably, our method outperforms [7] by a large margin, which
has also been trained against discontinuous motions. For
datasets concerning continuous motion, our framework is
able to retain the strong performance of the VFIT-B base-
line in interpolating continuous motion. Unlike [7], freezing
the employed VFI network allows us to take advantage of
the rich motion prior of high-capacity models like VFIT-B.
On the other hand, [7] re-trains the VFI network, resulting
in dropped performances across real-world datasets, shown
in Table 1 of the main paper. This is further verified through
the visualization of inaccurate D-map estimations in our
supplementary materials. The experiment results highlight
the design benefits of our framework against both continu-
ous and discontinuous motion.
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Table 2. Computational Complexity and Performance trade-off through down-scaled inputs for the ECG in the D-map estimator

Vimeo-90K [15]

Scale PSNR SSIM LPIPS FLOPs (T)
F E Total

×1 33.472 0.9381 0.0590

0.16

0.47 0.63
×1.5 33.442 0.9380 0.0591 0.32 0.48
×2 33.422 0.9380 0.0591 0.23 0.39
×4 33.453 0.9381 0.0590 0.18 0.33
×8 33.443 0.9380 0.0591 0.16 0.32

UCF101 [14]

Scale PSNR SSIM LPIPS FLOPs (T)
F E Total

×1 33.824 0.9408 0.0404

0.11

0.33 0.44
×1.5 33.825 0.9408 0.0404 0.22 0.34
×2 33.819 0.9408 0.0404 0.16 0.27
×4 33.822 0.9408 0.0405 0.12 0.23
×8 33.821 0.9407 0.0405 0.11 0.22

DAVIS [12]

Scale PSNR SSIM LPIPS FLOPs (T)
F E Total

×1 26.249 0.8173 0.2044

2.86

8.63 11.50
×1.5 26.240 0.8172 0.2046 5.49 8.35
×2 26.236 0.8173 0.2046 4.33 7.20
×4 26.235 0.8167 0.2048 3.28 6.15
×8 26.202 0.8156 0.2049 3.01 5.88

GDM [7]

Scale PSNR SSIM LPIPS FLOPs (T)
F E Total

×1 33.342 0.9486 0.0522

0.95

2.88 3.83
×1.5 33.334 0.9485 0.0523 1.83 2.78
×2 33.353 0.9485 0.0522 1.45 2.40
×4 33.309 0.9485 0.0523 1.10 2.05
×8 33.322 0.9486 0.0522 1.01 1.96

Table 3. Comparison against previous works on test datasets [7, 12, 14, 15]. Labels (2) and (4) refer to the input frame number. Red and
Blue indicates the best and runner-up, respectively. VFIT-B(4) + Ours shows the state-of-the-art performance, especially on GDM [7].

Vimeo-90K [15] UCF101 [14] DAVIS [12] GDM [7]

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DVF (2) [17] 32.792 0.9359 0.0395 32.333 0.9397 0.0340 24.087 0.7852 0.1588 28.709 0.9118 0.0753
SuperSlomo (2) [3] 30.812 0.9291 0.0482 28.500 0.9228 0.0564 26.259 0.8303 0.1206 27.651 0.8911 0.1117
SepConv (2) [10] 33.729 0.9454 0.0335 33.075 0.9419 0.0333 26.550 0.8376 0.1478 29.696 0.9082 0.1037
AdaCoF (2) [6] 34.103 0.9459 0.0427 33.320 0.9438 0.0353 26.791 0.8353 0.1643 29.980 0.9227 0.0803
Softsplat (2) [9] 33.723 0.9452 0.0336 33.112 0.9419 0.0332 26.542 0.8376 0.1479 29.667 0.9086 0.1039
CAIN (2) [1] 34.699 0.9514 0.0421 33.306 0.9444 0.0373 27.449 0.8511 0.1855 30.238 0.9284 0.0807
ABME (2) [11] 35.846 0.9584 0.0309 33.542 0.9458 0.0383 27.661 0.8601 0.1320 29.472 0.9209 0.0958
RIFE (2) [2] 34.048 0.9449 0.0233 33.184 0.9412 0.0284 27.246 0.8471 0.0925 30.085 0.9088 0.0801
IFRNet (2) [5] 35.837 0.9597 0.0274 33.451 0.9450 0.0330 27.467 0.8596 0.1261 30.239 0.9277 0.0706
EMA-VFI (2) [16] 36.042 0.9725 0.0312 33.814 0.9456 0.0317 26.477 0.8893 0.1465 29.711 0.9427 0.0892
CBMNet (2) [4] 36.127 0.9634 0.0329 33.801 0.9482 0.0315 27.828 0.8409 0.1356 30.616 0.9254 0.0754
SGM-VFI (2) [8] 35.387 0.9623 0.0338 33.657 0.9466 0.0321 26.732 0.8943 0.1395 29.564 0.9366 0.0731
VFIT-B(4) [13] 36.743 0.9638 0.0318 33.769 0.9472 0.0363 28.090 0.8640 0.1442 30.019 0.9280 0.0736

VFIT-B(4) + [7] 36.671 0.9631 0.0324 33.823 0.9475 0.0370 28.056 0.8625 0.1507 30.921 0.9371 0.0645
VFIT-B(4) + Ours 36.731 0.9641 0.0312 33.858 0.9496 0.0420 28.134 0.8645 0.1443 32.969 0.9480 0.0795

1.4. Additional D-map Comparisons

Because the GDM dataset is mostly comprised of dis-
continuities, it is hard to verify the accuracy of the extracted
D-map. Hence, we also examine D-maps in Figure 1 from
the real-world test datasets to verify its effectiveness in the
large presence of continuous motion. Contrary to the D-
maps in [7], the D-maps extracted by our proposed frame-
work are precise, activated only in regions of discontinuity.
Given the camera movements, the background is not static
in these real-world datasets. The D-map of our proposed
framework is only activated for discontinuities, compared
to [7] where the D-maps are rather naive, incorrectly pre-
dicting many continuous regions as discontinuities. This is

also directly reflected onto the interpolation results, where
our proposed framework shows better interpolation results
with less artifacts.

1.5. Continuous motion

Our framework is designed to enhance the robustness of
existing VFI models without the need for re-training. In-
stead, a frozen pre-trained model is employed, retaining the
most optimal performance for continuous motions. This
advantage of this design is can also be seen in Figure 1.
Compared to [7], which re-trains the VFI model, our frame-
work better retains the shape and structure of objects un-
der extreme motions (1st and 2nd row) and also better pre-
serves the texture of continuous regions, producing higher-
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Figure 1. Visual comparison of continuous motion on real-world test dataset [12, 14, 15]

Table 4. Comparison on various augmentation methods. - indicate no augmentation used

Augmentation Vimeo-90K [15] UCF101 [14] DAVIS [12] GDM [7]

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

- 33.556 0.9385 0.0592 32.879 0.9321 0.0518 26.261 0.8171 0.2088 29.073 0.9206 0.1200
FTM 33.338 0.9377 0.0593 32.797 0.9315 0.0516 26.039 0.8077 0.2074 30.884 0.9290 0.1015
FTM+ (Ours) 33.472 0.9381 0.0590 33.824 0.9408 0.0404 26.249 0.8173 0.2044 33.342 0.9486 0.0522

quality interpolation results. This is further consolidated in
the extracted D-maps where [7] correctly predicts disconti-
nuity (1st row, yellow circle) yet shows incorrect interpola-
tion, indicating a reduction in performance against contin-
uous motion due to re-training. Meanwhile, less accurate
D has also led to discontinuous interpolation of continu-
ous regions, resulting in blurs (2nd row) and over-smoothed
textures (1st row).

1.6. FTM and FTM+ comparison

We also evaluate the benefits of our expanded augmen-
tation method FTM+ compared to the original FTM aug-
mentation method. Table 4 show comparison of the Ada-
CoF [6] model trained with our framework using no aug-
mentations, FTM and FTM+. From the baseline framework
which uses no augmentation, the use of FTM augmentation
definitely enhances the model’s robustness to discontinu-
ities at the slight cost of performance on real-world datasets
[12, 14, 15]. Further expanding on the original FTM, we
add transparency, fill configurations as well as irregular and
scene change discontinuities to better replicate various dis-
continuities. As a result, FTM+ outperforms FTM on the
GDM dataset [7] by a large margin, showing strong robust-
ness to synthetic discontinuities. Moreover, we attribute the
improvement across real-world datasets to the added scene
change augmentation as previous augmentation methods in-
accurately predicted intermediate frames for scene changes
by a large degree.

2. Limitations
Although our proposed framework established a big step

forward in addressing discontinuities in VFI, it also has its
limitations. First, our framework has a strong dependence
on the performance of the employed VFI model. Our pro-
posed guidance techniques are established based on opti-
mal interpolation by the employed VFI model on continu-
ous motion. Therefore, the performance of the framework
largely varies depending on the choice and performance of
the employed model. Furthermore, the D-map approach of
blending I1 and Ic to synthesize I may be detrimental when
the spatial information between I1 and Ic has not been suf-
ficiently leveraged by the D-map estimator E . To address
these limitations, a possible next step in research could be
designing and training an end-to-end model without an ex-
plicit D-map from the ground-up to ensure problems do not
arise from the interconnection of separate modules.
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