
Improving Detail in Pluralistic Image Inpainting with Feature Dequantization

A. Encoder-decoder Arcitecture
In our proposed method, encoder-decoder has the same

architecture as PUT [4].

Encoder. The encoder is composed of 8 linear residual
blocks and 2 linear layers. Each block consists of a lin-
ear layer followed by a ReLU activation function. After
the linear layer, output is added to the input of the block
and passed through a ReLU activation function. In the en-
coding process, initially, the masked image x̂ ∈ RH×W×3

is transformed from RGB channels (3) to feature channels
(256) through linear layers with ReLU activation functions.
Subsequently, the feature undergoes computation with lin-
ear residual blocks. Finally, to convert features channels
into the codebook vector channels (256), it passes through
a linear layer followed by a ReLU activation function.

Decoder. The decoder comprises two paths: a feature up-
sampling path and a masked image downsampling path.

The feature upsampling path consists of 8 convolutional
residual blocks and 3 upsampling layers. Each block in-
cludes a 3 × 3 convolutional layer followed by a ReLU ac-
tivation function and a 1 × 1 convolutional layer. Subse-
quently, the output of the 1× 1 convolutional layer is added
to the input of the block and passed through a ReLU activa-
tion function. Upsampling is conducted using 4× 4 decon-
volutional layers with a stride of 2.

The masked image downsampling path comprises 3
downsampling layers. Downsampling is executed using
3× 3 convolutional layers followed by ReLU activation. In
the feature upsampling path, features traverse through resid-
ual blocks before undergoing upsampling. Subsequently,
the features are upsampled to match the image resolution.
In the proposed method, the feature resolution is 32 × 32,
and the image resolution is 256 × 256, thus 3 upsampling
steps are performed.

At each upsampling step, the upsampled features are
combined with the downsampled masked image using the
following equation:

fn = f ′n ⊗ (1−mn) + x̂n ⊗mn (1)

where f ′n represents the upsampled feature in the n-th
step, x̂n denotes the downsampled masked image in the n-

th step, and mn signifies the downsampled mask in the n-th
step.

Finally, to convert features channels (256) into the RGB
channels (3), upsampled features passes through a 3 × 3
convolutional layer.

B. Comparison with Deterministic Method

We compare the proposed method with the following
state-of-the-art deterministic inpainting approach LaMa [6].
Table 1 displays the quantitative results comparing our pro-
posed approach, FDM, with LaMa. FDM shows compet-
itive performance in terms of FID compared to the state-
of-the-art model LaMa. Particularly, it demonstrates better
performance, especially in the case of large masks.

Figure 1 illustrates the inference results of FDM and
Lama. It can be observed that Lama’s inpainting perfor-
mance deteriorates when the mask ratio is high. On the con-
trary, the proposed method generates natural images even as
the mask ratio increases.

LaMa sometimes fills the mask with a single color, as
seen in the example when the mask ratio is wide. In such
cases, if the model generates unnatural images, users have
no way to improve them. In contrast, PII offers various gen-
erated results, thereby expanding the user’s choice and in-
creasing the likelihood of obtaining satisfactory results.

C. Additional Quantitative Results

Table 2 presents a comparison of methods across MAE,
PSNR and SSIM. These metrics evaluate pixel-wise simi-
larity between an output image and the ground-truth image,
without considering diversity or alignment with human per-
ception. Therefore, they are not suitable for evaluating plu-
ralistic inpainting, as discussed in Section 4.1.

FDM converts quantized features into continuous fea-
tures based on the predicted image structure by the feature
sampler, without making them closer to the ground-truth
features. Therefore, FDM does not significantly improve
the performance of PUT [4] in terms of PSNR, SSIM [8],
and MAE, unlike in FID [2] and LPIPS [9].

As discussed in Section 4.4, the Paris Street View dataset
[1] contains a lot of noise, resulting in a decrease in both
the performance improvement capability of FDM and the
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Table 1. Comparison with deterministic inpainting model

Methods
Places Paris Street View

FID LPIPS FID LPIPS
small large small large small large small large

LaMa 17.30 29.86 0.120 0.213 10.89 21.79 0.124 0.236
Ours (PUT +FDM) 18.46 29.67 0.127 0.230 11.63 18.66 0.131 0.234

GT Input LaMa Ours Input LaMa Ours

Figure 1. Comparison with deterministic models across various mask ratios.

Table 2. Quantitative results of different methods. Bold indicates the best score in PII methods.

Type
Dataset Places [10] Paris Street View [1]
Metric MAE SSIM PSNR MAE SSIM PSNR
Mask Ratio small large small large small large small large small large small large

DII LaMa 0.024 0.045 0.868 0.707 26.19 22.38 0.025 0.053 0.897 0.764 25.94 21.94

PII

ICT [7] 0.033 0.059 0.821 0.625 24.33 20.53 0.035 0.065 0.857 0.693 24.20 20.47
MAT [3] 0.028 0.049 0.873 0.700 26.48 22.09 0.031 0.063 0.859 0.688 24.22 20.22
LDM [5] 0.024 0.049 0.849 0.662 25.47 21.24 0.032 0.063 0.849 0.689 23.87 20.23
PUT [4] 0.028 0.054 0.840 0.649 25.07 20.88 0.031 0.059 0.875 0.729 24.90 21.11
Ours (PUT +FDM) 0.026 0.052 0.844 0.653 25.24 20.98 0.030 0.058 0.877 0.733 25.03 21.22

performance of MAT [3] and LDM [5]. However, as dis-
cussed in Section 4.2, the proposed method demonstrates
much greater diversity than MAT and achieves better FID
scores than LDM with large masks. Therefore, our pro-
posed method has been proven to generate diverse and
natural-looking images.

D. Additional Qualitative Results

Figure 2 provides a more detail comparison between
PUT [4] and our proposed method. PUT produce color
discrepancies and distorted structures or fails to properly
represent texture. For example, in row 1 and 3, PUT gen-
erates the window grilles inconsistently or unclearly. How-
ever, our proposed method generates the window grilles in
a straight line without interruption.

Figure 3 and Figure 4 provide more visual comparison
of diverse inpainting results among PII methods. In ICT [7]
and LDM [5], artifacts have been generated, such as blur-
ring or structural ambiguity. Although MAT [3] shows few
artifacts, it often generates structurally similar images, re-
sulting in limited diversity in the results. In contrast, our

proposed method has successfully generated diverse images
while preserving naturalness.
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Figure 2. Detail comparison between proposed method and PUT.
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Figure 3. Visual comparison of diverse inpainting results in Places
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Figure 4. Visual comparison of diverse inpainting results in Paris Street View
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