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A. Diagram for Character-Level Matching
Figure 1 illustrates the computation process for

character-level matching. We calculate the character error
rate (CER) score through the following steps. Initially, we
conduct sequence alignment of the ground truth and pre-
dicted characters using Levenshtein distance, a technique
for determining the alignment path. Levenshtein distance
consists of three types of single-character edits: insertions,
deletions, and substitutions. In our character-level match-
ing process, the roles of each edit are slightly modified. For
insertions, a space is added to the prediction; for deletions,
a space is added to the ground truth; and for substitutions,
no operation is performed. These operations collectively
enable character matching. After aligning the predicted and
ground truth words, we compute the character-level reliabil-
ity score by comparing the character confidence score with
correctness.

Figure 1. An example of the calculation process for character-
level matching. (a) represents the recognition results (Prediction)
of super-resolved images using CRNN [12] and the ground truth.
(b) illustrates the character-level matching process. Blue repre-
sents an example of a missing character.

B. Detailed Descriptions of Degradations
We conduct manual degradation in two degrees: one

with light degradation and the other with severe degrada-
tion. Each degradation also comprises two cases: one in-
cludes Gaussian blur and Gaussian noise, and the other adds
JPEG compression degradation to them. Table 1 presents
the hyperparameters for blur, noise, and JPEG compression.
For the added noise values, we report the average results of

5 experiments conducted with random seeds from 1 to 5,
accounting for their inherent randomness.

Method Component Light
Degradation

Severe
Degradation

Gaussian Blur kernel size 3 5
sigma 5 6

Gaussian Noise mean 0.0025 0.005
std 0.0075 0.015

JPEG Compression image quality 40 40

Table 1. Hyperparameters for manual degradation. We conduct
experiments with two levels of degradation: light and severe.

Method PSNR SSIM

Bicubic 20.35 0.6961

TSRN [15] 21.42 0.7690
TBSRN [2] 20.91 0.7603
TG [3] 21.10 0.7341
TPGSR [8] 20.97 0.7719
TPGSR-3 [8] 21.18 0.7774
DPMN (+TATT) [17] 21.49 0.7925
C3-STISR [16] 21.51 0.7721

TATT [9] 21.52 0.7930
TATT [9] w/ Ours 21.53 0.7925

LEMMA [5] 20.90 0.7792
LEMMA [5] w/ Ours 20.55 0.7707

Table 2. Experimental results of PSNR and SSIM compared with
mainstream STISR methods.

C. Limitations of Evaluation Metrics
Recently, metrics that evaluate STISR are changing from

PSNR and SSIM, which evaluate visual quality, to text
recognition accuracy. An inherent drawback of existing
PSNR and SSIM metrics is their tendency to yield low
scores, even when the image is better suited to represent
text, owing to the presence of noise or degradation in the
ground truth image. In particular, for the above two met-
rics, there is an inherent problem because the results are
produced through comparison with HR images. Table 2



Figure 2. Limitations of visual metrics. Despite showing significantly better qualitative results due to noise present in the ground truth
images, it exhibits low PSNR and SSIM values. This demonstrates the difficulty of using visual metrics as indicators of good performance.
The experiment is based on TATT [9], where the super-resolved output is recognized using CRNN [12].

Parameter TATT [9] LEMMA [5]

Prior generator PARSeq [1] ABINet [4]
Batch size 64 64
Learning rate 10−3 10−3

Optimizer Adam Adam
Weight decay factor - 0.5 after 400 epochs
Training epochs 500 500
Embedding dims 384 512
Alphabet set ‘a’ to ‘z’, ‘A’ to ‘Z’, ‘0’ to ‘9’, and punctuation symbols ‘a’ to ‘z’ and ‘0’ to ‘9’
Image loss ∥xSR − xHR∥2 ∥xSR − xHR∥2

Structure loss 1 − TSSIM(DF (Y ), F (DY ), DX) -
Recognizer loss - ∥ASR − AHR∥1 + WCE(pSR, ygt)

Distillation loss (removed) ∥pt
HR − ps

LR∥1 + KL(ps
LR − pt

HR) -
Fine-tuning loss (removed) - CE(pLR, ygt)

Loss function (1 − α) · CE(ps
LR, ygt) + α · KL(ps

LR(τ), pt
HR(τ))

Table 3. Implementation details. We replaced the conventional distillation loss and fine-tuning loss used for training the prior generator in
TATT [9] and LEMMA [5] with a mixed loss comprising cross-entropy loss and softened Kullback-Leibler divergence loss. In the image
loss, xSR represents the output image from the super-resolution network, and xHR represents the high-resolution ground truth image.

displays low PSNR and SSIM values when our proposed
method is applied. However, Figure 2 is an example of
an image that is clearer or contains more structural detail
despite lower performance in PSNR or SSIM metrics. We
demonstrate high generalization performance by placing a
greater emphasis on text recognition accuracy and evaluat-
ing across diverse scene text recognition datasets.

D. More Details for Implementation

We conduct experiments by applying our proposed
method to two baseline methods, TATT [9] and LEMMA
[5]. Therefore, we would like to introduce the implementa-
tion details used for each method. Table 3 summarizes the
details for each method, including the character recognizer
used, batch size, learning rate, optimizer, weight decay fac-
tor, epochs, embedding dimension of penultimate layer rep-
resentations, alphabet set, and loss function. In the loss
function, we replaced it with a unified loss that mixes the
distillation loss and fine-tuning loss used in each method.

E. Hyperparameter Analysis
We analyze the impact of the hyperparameters τ and

α, which are associated with our proposed loss function.
We conduct experiments on the hyperparameters using
LEMMA [5] with our method, and the same parameters are
applied to TATT [9] with our method.

τ is a parameter that adjusts the smoothness of the
Kullback-Leibler (KL) divergence loss in the proposed
combined softened KL divergence loss and cross-entropy
loss. When τ is greater than 1, the larger it gets, the
smoother the distribution becomes. Table 4 shows the eval-
uation results on the TextZoom [15] dataset according to
different τ values. The results indicate that a τ value of 3
generally yields the best performance.

τ ASTER [13] MORAN [7] CRNN [12] Average

1 66.1% 64.5% 56.8% 62.5%
3 67.9% 65.0% 58.1% 63.7%
5 66.9% 65.1% 58.0% 63.3%
10 67.4% 64.2% 58.1% 63.3%

Table 4. Recognition accuracies when adjusting the smoothness of
the KL divergence loss. Average refers to average accuracy.



α is a parameter that adjusts the ratio between hard labels
and soft labels. As α increases, the influence of soft labels
becomes greater; conversely, a decrease in α increases the
influence of hard labels. Table 5 shows the evaluation re-
sults on the TextZoom [15] dataset according to different α
values. The results indicate that an α value of 0.5 generally
yields the best performance.

α ASTER [13] MORAN [7] CRNN [12] Average

0.0 66.0% 63.2% 56.3% 61.8%
0.3 66.7% 64.7% 57.6% 63.0%
0.5 67.9% 65.0% 58.1% 63.7%
0.7 67.5% 65.2% 58.2% 63.6%
1.0 66.6% 64.1% 57.1% 62.6%

Table 5. Recognition accuracies adjusting the ratio between hard
labels and soft labels.

F. Visualizations on Scene Text Recognition
Datasets

To compare how well generalization is achieved, we pro-
vide visualizations and results for the scene text recognition
dataset. Figure 3 shows visualization results for the scene
text recognition dataset. Table 6 presents the experimental
results of adding JPEG compression to manual degradation
using existing Gaussian blur and Gaussian noise.
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Figure 3. Visualization of SR images and their recognition results on scene text recognition datasets by CRNN [12], based on TATT [9]
and LEMMA [5]. Red characters indicate wrong recognition results.

Method Light Degradation Severe Degradation

IIIT5K [10] IC15 [6] SVT [14] SVTP [11] IIIT5K [10] IC15 [6] SVT [14] SVTP [11]

BICUBIC 21.0% 19.4% 0.5% 52.0% 1.1% 0.1% 0.0% 9.2%

TATT [9] 45.3% 35.4% 20.0% 72.3% 11.9% 9.5% 2.8% 28.8%
TATT [9] w/ Ours 51.0% 46.4% 49.1% 76.3% 18.0% 12.7% 3.2% 31.4%

∆ +5.8% +10.9% +29.1% +4.1% +6.0% +3.3% +0.3% +2.6%

LEMMA [5] 16.8% 15.5% 16.6% 32.1% 6.4% 2.7% 0.0% 17.3%
LEMMA [5] w/ Ours 49.4% 46.5% 41.8% 72.3% 15.5% 12.2% 0.3% 34.4%

∆ +32.6% +31.0% +25.2% +45.1% +9.1% +9.5% +0.3% +17.1%

Table 6. Recognition accuracies by CRNN [12] for the manual degradation scene recognition datasets. Manual degradation includes
Gaussian blur, Gaussian noise, and JPEG compression.


