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Figure 1. Visualized filters of EDSR-baseline implemented in a
recursive manner. We visualize the 1st convolutional layer (Top)
and the 2nd (Bottom) of residual blocks.

1. Experimental Details

We used He initialization [2] for the initialization of
the partial filters. We provide a visualized explanation
of network structures in Figs. 3 and 4. To simplify
the implementation, biases in CONV-PS layers of
recursive/recurrent models are omitted. Also, to ensure a
fair comparison of inference speed, PS models from which
biases are removed are compared with original models
without biases.
CARN, DRRN, EDSR, and RCAN-PS All PS models,
including CARN [1], DRRN [6], EDSR [5], and RCAN
[7] mentioned in the main paper, are trained using the
official implementation of CARN. We train the models with
a batch size of 16, starting with an initial learning rate
of 2 × 10−4, which is reduced by a decay rate of 0.85.
Each model is trained from scratch for 2,000K iterations,
followed by an additional 2,000K iterations of fine-tuning.
The results presented in Tables 3 and 4 are based on models
trained for 2,000K iterations without a fine-tuning process.
Considering the shape of the filter, we set the partial filter
shape to C×C×1×1. For CARN, PS is exclusively applied
to the 3×3 convolution layers within cascading blocks.
In DRRN, PS is restricted to the recursive blocks. For
EDSR-baseline-Fixed and RCAN G5B10-Fixed, the two
convolution layers within each repeating residual block are
configured to share the same two filters throughout the
entire model.

SRFBN-PS We train models with a batch size of 16. The
initial learning rate is set to 2×10−4 with a decay rate of 0.5.
Since SRFBN [4] uses a wide kernel, such as 32×32×6×6
for ×2, we set the partial filter shape to C×1×Kh×Kw for
SRFBN-S to enable efficient implementation. We apply PS
only to the convolution layers for downsampling.

1.1. Experimental Results of Filter Settings

We report full experimental results of EDSR-baseline-PS
with different partial filter settings in Tab. 1.
Input v.s. Output Channel We investigate which
direction, splitting the input or output channel-wise, yields
better results. We compare 64×32×1×1, 32×64×1×1,
64×8×3×3, and 8×64×3×3 with various ratio values.
As shown in Tab. 1, no clear performance difference is
observed for each pair. Among these methods, it is
observed that smaller partial filters tend to yield superior
performance. This superior performance of smaller filters
likely arises from a broader range of possible combinations.

2. Supplementary Studies of PS
2.1. Filter Diversity

In the main paper, we have demonstrated that Partial
filter-Sharing can significantly improve upon previous
parameter-sharing SR models. In this section, we visualize
the filters of PS networks to show that diverse filters are
utilized within the network.

In Figs. 1 and 2, we provide visualizations of the filters
for both PS and recursive EDSR-baseline models. For
filter visualization, we use the EDSR-baseline-PS with a
partial filter shape of 64×64×1×1 and a Np/Ntotal ratio
of 1/16, which matches the filter size in the EDSR-baseline
implemented recursively. We collect the filter values
from the first input channel’s first five output channels,
denoted as W [0:5,0,:,:]. As shown in Figs. 1 and 2,
in contrast to recursive models that use the same sets
of filters repeatedly, EDSR-baseline-PS employs a diverse
range of filters at each depth. This variety of filters
enhances the network’s representational ability, surpassing
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Figure 2. Visualized reconstructed filters of EDSR-baseline-PS with Np/Ntotal = 1/16. We visualize the 1st convolutional layer (Top)
and the 2nd (Bottom) of residual blocks.

Methods Np/Ntotal Params Set5 Set14 B100 Urban100

Baseline - 1.37M 38.01/0.9608 33.51/0.9187 32.22/0.9004 32.23/0.9296
Recursive - 0.26M 37.50/0.9589 32.91/0.9133 31.89/0.8962 30.99/0.9166
D.S.Conv-16 [3] - 0.34M 37.78/0.9600 33.19/0.9161 32.08/0.8987 31.61/0.9236
D.S.Conv-12 [3] - 0.60M 37.84/0.9605 33.27/0.9605 32.17/0.8997 31.88/0.9268
D.S.Conv-8 [3] - 0.86M 37.92/0.9606 33.40/0.9183 32.20/0.9001 32.08/0.9287
D.S.Conv-4 [3] - 1.11M 37.96/0.9615 33.43/0.9608 32.23/0.9004 32.18/0.9295

64×64×1×1

1/16 0.27M 37.65/0.9597 33.11/0.9156 32.02/0.8980 31.44/0.9219
2/16 0.35M 37.77/0.9601 33.19/0.9161 32.10/0.8988 31.68/0.9243
4/16 0.51M 37.89/0.9604 33.29/0.9173 32.16/0.8995 31.93/0.9268
6/16 0.66M 37.97/0.9606 33.43/0.9183 32.18/0.8998 32.03/0.9277
8/16 0.82M 38.00/0.9608 33.50/0.9185 32.20/0.9000 32.13/0.9287
10/16 0.98M 38.01/0.9608 33.46/0.9180 32.20/0.9001 32.17/0.9289
12/16 1.14M 38.00/0.9608 33.47/0.9180 32.21/0.9001 32.19/0.9291
14/16 1.30M 38.00/0.9608 33.47/0.9181 32.22/0.9002 32.22/0.9294

64×1×3×3
1/32 0.36M 37.85/0.9603 33.25/0.9164 32.10/0.8988 31.69/0.9244
1/16 0.53M 37.94/0.9606 33.33/0.9173 32.17/0.8997 31.99/0.9274
2/16 0.86M 38.01/0.9608 33.43/0.9177 32.21/0.9001 32.15/0.9290

64×32×1×1

1/16 0.29M 37.74/0.9598 33.12/0.9156 32.03/0.8979 31.41/0.9215
4/16 0.57M 37.92/0.9604 33.33/0.9178 32.16/0.8996 31.94/0.9270
8/16 0.95M 37.98/0.9608 33.44/0.9175 32.19/0.9000 32.12/0.9286
12/16 1.32M 38.02/0.9608 33.48/0.9182 32.22/0.9002 32.20/0.9291

32×64×1×1

1/16 0.29M 37.70/0.9598 33.11/0.9157 32.02/0.8980 31.43/0.9217
4/16 0.57M 37.90/0.9604 33.34/0.9170 32.16/0.8995 31.94/0.9270
8/16 0.95M 38.01/0.9608 33.47/0.9181 32.20/0.9000 32.16/0.9290
12/16 1.32M 38.00/0.9607 33.46/0.9182 32.21/0.9002 32.19/0.9293

64×8×3×3

1/16 0.27M 37.71/0.9597 33.02/0.9150 32.00/0.8977 31.33/0.9206
4/16 0.50M 37.86/0.9604 33.28/0.9165 32.11/0.8991 31.80/0.9255
8/16 0.81M 37.95/0.9606 33.37/0.9174 32.17/0.8997 32.01/0.9274
12/16 1.12M 37.99/0.9607 33.46/0.9176 32.20/0.9000 32.14/0.9289

8×64×3×3

1/16 0.27M 37.70/0.9597 33.08/0.9150 32.02/0.8979 31.39/0.9210
4/16 0.50M 37.84/0.9604 33.28/0.9168 32.13/0.8992 31.83/0.9255
8/16 0.81M 37.87/0.9604 33.37/0.9175 32.18/0.8998 32.03/0.9278
12/16 1.12M 37.99/0.9608 33.42/0.9175 32.20/0.9000 32.16/0.9288

Table 1. Experimental results of EDSR-baseline-PS (×2) with different partial filter shapes and Np/Ntotal settings. D.S.Conv-n represents
EDSR-baseline with n residual block consisting of depth-wise separable convolution.
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Figure 3. Visualized building blocks of EDSR-baseline-PS, and
RCAN-PS.
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Figure 4. Visualized building blocks of DRRN-PS, CARN-PS,
and SRFBN-PS.

Coeff. Task DRRN-PS CARN-PS
PSNR/∆PSNR PSNR/∆PSNR

×2
×2 31.73/00.00 32.09/00.00
×3 24.74/-03.11 28.16/-00.03
×4 23.24/-02.48 26.09/-00.06

×3
×2 22.71/-09.02 32.08/-00.01
×3 27.85/00.00 28.19/00.00
×4 23.64/-02.08 26.12/-00.03

×4
×2 19.28/-12.45 32.01/-00.08
×3 22.80/-05.05 28.17/-00.02
×4 25.72/00.00 26.15/00.00

Table 2. The experimental results of the up-scaling task with
different up-scaling coefficient matrices evaluated on Urban100.
Coeff. represents coefficient matrices.
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Figure 5. Visualized filters in CARN-PS (Left) with Np/Ntotal =
8/9 and DRRN-PS (Right). The filter values are collected from
the two channels of the first convolutional layer in the first block.

the capabilities of traditional parameter-sharing methods.
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Figure 6. Visualized coefficient matrices (Top) and their difference
maps (Bottom) of DRRN B1U9-PS. Values are collected from the
1st layer of the 1st block.
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Figure 7. Comparison of characteristics of input images across
different scales (Top) and ×2 up-scaling results using coefficient
matrices from different up-scaling tasks (Bottom).

2.2. Efficacy in Multi-scale Learning Methods

In this section, we explore the characteristics of
the multi-scale learning models employing the proposed
method. As shown in Fig. 5, CARN-PS and DRRN B1U9-
PS exhibit similarities across the filters for different up-
scaling tasks. We also provide visualizations of the
coefficient matrices of the networks and their difference
maps in Figs. 6 and 8, which highlight the similarities and
differences in the filters across different up-scaling tasks.

Additionally, we investigate their similarities and
differences by switching tasks between up-scaling filters.
In Tab. 2, we compare the experimental results of the
up-scaling task using coefficient matrices from different
tasks. We observe that exchanging the tasks of the
coefficient matrices results in a minimal performance
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Figure 8. Visualized coefficient matrices (Top) and their difference maps (Bottom) of CARN-PS with Np/Ntotal = 8/9. Values are
collected from the 1st layer of the 1st cascading block.

decrease for CARN-PS, ranging from zero to 0.1dB, rather
than a significant deterioration. This minimal performance
degradation, despite changing the coefficient matrices,
suggests that there is a similarity among the filters for
different up-scaling tasks. This result explains why multi-
scale learning has been successful so far.

In contrast, despite the similarity of filters across
different scales, DRRN-PS shows a notable decrease in
performance compared to CARN-PS. The differing results
between the two networks arise from differences in how
they process the inputs. CARN places a pixel-shuffle
layer at the end of the network, processing the inputs
at the dimension of the input image. On the other
hand, DRRN up-scales the input image to the target size
using bicubic interpolation before processing. Such pre-
processing leads to significant differences in the statistics
of the input features at each scale, as shown in Fig. 7
(Top). This variation in input statistics necessitates the
network to develop filters adapted to each scale’s unique
input characteristics. For example, Fig. 7 (Bottom) shows
that the ×4 filter, which typically handles severely blurred
images, tends to sharpen the input images excessively.

These results demonstrate that the diversification of
filters from PS plays a critical role in enhancing
DRRN B1U9-PS’s performance. Also, considering the
most dramatic performance improvements observed with
DRRN B1U9-PS, PS seems most effective when applied to
multi-tasking networks handling diverse input statistics.

2.3. Limitation

To improve parameter-sharing SR methods, we have
proposed the Partial filter-Sharing technique. This method
allows network layers to utilize a wide range of filters
through partial filters and coefficient matrices. In this
section, we introduce some of the method’s limitations.

In the PS framework, we factorize shared weights into
partial filters and coefficient matrices. As noted in Section

4.3, this process results in the loss of channel/spatial
correlation information from partial filters, which must
be compensated by the coefficient matrices. Therefore,
applying PS in networks with smaller capacities could limit
the capacity of the coefficient matrix, resulting in less
effective filter reconstructions.

To address this, improving the representation of PS
filters may be necessary, which would involve refining
how partial filters and coefficient matrices are partitioned.
One potential solution is to allocate more parameters
to the coefficient matrix during weight factorization.
Alternatively, adopting adaptive filtering techniques might
offer a way forward. This would require an efficient module
for calculating the coefficient matrix based on the inputs.
Further refinement of PS is left for future works.
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