
Appendices

A. Pseudo code for UDLS

Algorithm 1 UDLS

Require: MIL classifier p(·), PatchDropout rate r, label

smoothing factor α, Training epochs of Stage 1 and 2:

{E1, E2}
Input: A train set of feature embedding bags F =

{F1, · · · , FN}, where Fi = {fi,1, · · · , fi,K}, Fi ∈
RK×D and fi,j ∈ R1×D is the j-th instance feature in

i-th bag

Output: Trained calibration MIL classifier and Predicted

labels {p̂(Fi)|1≤i≤N}

for Bag index i = 1 to N do
for Dropout index t = 1 to T do

Fi,t ← PatchFeatureDropout(Fi)
end for

end for
for epoch = 1 to E1 do

for Bag index i = 1 to N do
Li
1 ← ∑T

t=1 L1(y(Xi) | p(Fi,t))
BackpropagateAndOptimize(p(·) | Li

1)
end for

end for
for Bag index i = 1 to N do

pT (Fi) ← 1
T

∑T
t=1 p(Fi,t), pT (Fi) ∈ R1×C

H(pT (Fi)) ← −∑C
c=1 pT (Fi)[c] log(pT (Fi)[c])

LS(Xi;α) ← (H(pT (Fi))−Hmin)
Hmax−Hmin+ε · α, LS(Xi;α) ∈

R1×1

yLS
c (Xi) ← yc(Xi)(1−LS(Xi;α))+LS(Xi;α)/C

end for
for epoch = 1 to E2 do

for Bag index i = 1 to N do
Li
2 ← L2(y

LS
c (Xi) | p(Fi))

BackpropagateAndOptimize(p(·) | Li
2)

end for
end for

B. Source code for UDLS

Our code can be found at: https://github.com/
parkhyeongminn/UDLS

C. Qualitative Results on Various Models
Fig. 1, Fig. 2, and Fig. 3 present the confidence his-

tograms and reliability diagrams that compare the calibra-

tion results of the backbone MIL models without calibra-

tion, with label smoothing, and with UDLS on the Came-

lyon16 image classification. The top rows show the his-

tograms of the predicted confidence, where the dashed

black lines indicate the average accuracy, and the dashed

gray lines indicate the average confidence. The bottom rows

show the reliability diagrams which plot the average bin ac-

curacy against the average bin confidence of the positive

labels.

From Fig. 1, the confidence histograms and the reliabil-

ity diagrams indicate that the AB-MIL is under-confident,

and it becomes even more under-confident with label

smoothing, with no sample possessing a predicted proba-

bility over 0.7. On the other hand, the under-confidence

problem of AB-MIL is resolved using UDLS, being al-

most perfectly calibrated. In addition, it shows a notable

improvement in classification accuracy at the same time.

It suggests that while the original label smoothing makes

samples harder for under-confident models, the proposed

uncertainty-based data-wise label smoothing is more effec-

tive for identifying easy samples.

Fig. 2 and Fig. 3 show that Trans-MIL and DTFD-MIL

are over-confident, and both the original label smoothing

and the proposed uncertainty-based data-wise label smooth-

ing are effective for calibrating the over-confident models.

After calibration, the gaps between the average accuracy

and the average confidence in the confidence histograms are

reduced, and the samples appear in the bins of the interme-

diate positive confidence values of the reliability diagrams,

which indicates that both the label smoothing and UDLS

are capable of identifying hard samples from over-confident

models.

Notably, the confidence histograms indicate that the

average accuracy of the label smoothing is always lower

than the average accuracy of the UDLS, indicating that

UDLS is effective in both calibration and classification

capability. Further analysis is explained in 4.4.

D. Sensitivity Analysis
We conducted a sensitivity analysis to analyze the main

hyper-parameters of the UDLS, PatchDropout rate r, and

the global label smoothing factor α. We conducted experi-

ments by varying the hyper-parameters.



(a) Without Calibration (b) Label Smoothing (c) UDLS

Figure 1. The confidence histograms and the reliability diagrams of AB-MIL on Camelyon16

(a) without calibration (b) Label Smoothing (c) UDLS

Figure 2. The confidence histograms and the reliability diagrams of Trans-MIL on Camelyon16

(a) without calibration (b) Label Smoothing (c) UDLS

Figure 3. The confidence histograms and the reliability diagrams of DTFD-MIL on Camelyon16

Tab. 1 shows the results on different values of the la-

bel smoothing factor α. Since the original label smooth-

ing is usually implemented with a factor of 0.05 or 0.1, we

used the same values. Results demonstrate that AB-MIL

and Trans-MIL show better performance when α = 0.05
while DTFD-MIL performs better when α = 0.1.

Since there is no rule of thumb regarding the Patch-

Dropout rate r, the experiments were performed with the

variations in this hyper-parameter. The average accuracy,

AUC, and ECE values were computed from the classifica-

tion results across the 3 MIL frameworks on Camelyon16

and TCGA, respectively.



AB-MIL [1] Trans-MIL [2] DTFD-MIL [4]

Camelyon16 TCGA Camelyon16 TCGA Camelyon16 TCGA
Alpha Acc ↑ AUC ↑ ECE ↓ Acc ↑ AUC ↑ ECE ↓ Acc ↑ AUC ↑ ECE ↓ Acc ↑ AUC ↑ ECE ↓ Acc ↑ AUC ↑ ECE ↓ Acc ↑ AUC ↑ ECE ↓
0.05 0.842 0.927 0.078 0.859 0.895 0.084 0.866 0.924 0.121 0.863 0.947 0.095 0.803 0.857 0.115 0.824 0.920 0.076

0.1 0.850 0.922 0.060 0.863 0.904 0.093 0.898 0.914 0.064 0.886 0.945 0.082 0.695 0.762 0.152 0.736 0.812 0.057

Table 1. Sensitivity analysis on the impact of the label smoothing factor α on classification results across MIL models

(a) Acc and AUC on Camelyon16 (b) ECE on Camelyon16

(c) Acc and AUC on TCGA (d) ECE on TCGA

Figure 4. Sensitivity analysis on the impact of the PatchDropout

rate. The x-axis represents the PatchDropout rate. The y-axis in

(a) and (c) are the average accuracy and AUC from the classifica-

tion results of the 3 MIL models on Camelyon16 and TCGA, re-

spectively, and the y-axis in (b) and (d) are the average ECE from

the classification results of the 3 MIL models on Camelyon16 and

TCGA, respectively.

Results in the Fig. 4 indicate that the optimal Patch-

Dropout rate differs slightly between the two datasets. The

average accuracy and AUC do not vary greatly depending

on the PatchDropout rate, and they show the highest values

when the PatchDropout rate is 0.3 on both datasets.

The best-performing PatchDropout rate on calibration

in terms of ECE is 0.2 for Camelyon16 and 0.3 for TCGA.

Since the TCGA dataset contains more positive instances

in the positive bags than the Camelyon16, a higher Patch-

Dropout rate is required to generate enough variations from

the multiple predictions of a single input WSI to further

extract the predictive entropy estimates for smoothing

factor, resulting in a better-calibrated model.

E. Implementation Details for Different Data
Augmentations

We provide the implementation details of the experi-

ments with different data augmentations presented in 4.5.1.

All augmentation methods were conducted 10 times for

each input data.

The Gaussian noise method is implemented by selecting

random noise from a Gaussian distribution with a mean of

zero and a standard deviation calculated across instance fea-

tures in a bag. Then, the noise is scaled to 0.1 and added to

patch feature cj .

c̄j = cj + γX, X ∼ N (0, σ2
i ), γ = 0.1 (1)

The ReMix [3] consists of two steps: reduce and mix.

First, it reduces the number of instances in WSI bags by

substituting instances with patch cluster centroids. Then, a

”Mix-the-bag” augmentation includes four online, stochas-

tic, and flexible latent space augmentations: Append, Re-

place, Interpolate, and Covary. Among these, Covary-

augmentation was chosen for its superior performance in

the original paper. Covary-augmentation creates a new rep-

resentation from the key covariance matrix by

c̄j = cj + λ · δ, δ ∼ N (0,Σk
j∗) (2)

where λ is a strength hyper-parameter and Σk
j∗ is the co-

variance matrix corresponding to the closest patch center

centroid ckj∗ . Following the implementation of the original

work, we set the number of cluster centroids as K = 8,

and the augmentation probability as p = 0.5, and uniformly

sample λ from the range (0, 1) in each augmentation.
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