
Learning to Visually Connect Actions and their Effects—Appendix

Paritosh Parmar Eric Peh Basura Fernando
Centre for Frontier AI Research, Agency for Science, Technology and Research, Singapore

https://github.com/LUNAProject22/CATE

1. Dataset samples with and without object de-
tections

For easier viewing, we have provided them in the accom-
panying Video.

2. Further details on Baseline Methods for Ac-
tion Selection

In this section, we provide further details on the various
baseline approaches that we design and evaluate. Actions
are represented as video clips, while states by very short
clips. Unless specified otherwise, we use a backbone model
(E) pretrained on a large-scale action recognition dataset to
extract features for actions and states. Subsequently, var-
ious modules mentioned in the following operate on these
features.

2.1. Naive model

Approach is illustrated in Figure 1. As a simple base-
line, in naive matching the average of the initial and desired
or the final state features are matched with the action fea-
tures using cosine similarity. During inference, the action
option with the highest similarity score is selected as the
correct answer. Note that, this model involves no training;
pretrained action recognition model is used as the state and
action feature extractor.

Initial 
State

Desired 
State Action 

Option 1
Action 

Option 2

E E E E

measure 
similarity

measure 
similarity

…

Other 
action 
option

Figure 1. Naive model. This model involves no training, but only
inference.

⊕
represents averaging operation.

Predicted 
Desired State

Representation

Predicted 
Desired State

Representation

Desired 
State

E

Initial 
State

E

Correct 
Action

E

Action Encoder 
head

Incorrect 
Action

E

Action Encoder 
head

Initial 
State

E

repelattract

Actual Desired State
Representation

Figure 2. Actions as Transformations model.
⊙

represents
Hadamard product. Here, we have shown only one incorrect op-
tion; but in practice, during training, we consider all the incorrect
options.

2.2. Treating Actions as Transformations

The approach (in training mode) is shown in Figure 2.
Actions can be viewed as transformations [9] which when
applied to the initial state yields the desired or the final state.
While the original approach uses fixed transformations [9],
our adaptation facilitates conditional transformations com-
puted on the fly. We develop a model in which a trans-
formation vector is computed from an action clip using a
dense network. This transformation vector (A) when mul-
tiplied with the initial state vector (I) yields the final state
vector (F ). During training, we use contrastive learning [1]
to train the parameters of action encoder: Cosine similarity
between predicted and actual desired state representations
is maximized for the correct action and minimized for the
incorrect action. During inference, the action option pre-
dicting the final state with the highest similarity to the given
final state feature is selected as the correct answer. We term

1

https://github.com/LUNAProject22/CATE


Desired 
State

E

Initial 
State

E

Correct 
Action

E

Bilinear interaction 
network

Incorrect 
Action

E

Initial 
State

E

repelattract

Actual Desired State
Representation

Bilinear interaction 
network

Predicted Desired State
Representation

Predicted Desired State
Representation

Figure 3. MoRISA model.

these models as Actions as transformations (AT).

2.3. Modeling rich interactions between initial state
& action (MoRISA)

Approach (in training mode) is shown in Figure 3. Here
a bilinear model [4] is leveraged to capture rich interactions
between the initial state and the action to generate the final
state in feature space. Essentially, initial state (I) and action
representations (A) are fed into a bilinear model, which out-
puts a final state representation (F ). The parameters of the
model are trained using contrastive learning as before and
the inference is done similarly to AT model above.

2.4. LinSAES: Learning Linear State-Action Em-
bedding Space

Concept of this approach is shown in Figure 4a; and the
framework (in training mode) is shown in Figure 4b. In
this framework, actions and initial states undergo transfor-
mation into a linear embedding state-action representation
space through a Transformer encoder (we term it as AEX-
former in Figure 4b). The hypothesis suggests that within
this linear, disentangled space, adding an action vector (A)
to the initial state representation (I) enables a transition to
the final state in the representation space (F ) (illustrated in
conceptual diagram in Figure 4a). The Transformer encoder
processes a sequence of initial state and action representa-
tion vectors, and the resulting output is decoded by a linear
decoder (D) to produce the final state feature vector. Dur-
ing training, all model parameters are optimized end-to-end
with the objective of aligning the resultant final state rep-
resentation with the ground truth final state representation.
Optimization and inference process remains the same as AT

Learnt Linear Embedding Space

Entangled Raw Input Space

Encoder Decoder

I F

A

𝑰 + 𝑨 = 𝑭

(a) LinSAES Concept.

Predicted 
Desired State

Representation

Predicted 
Desired State

Representation

Desired 
State

E

Initial 
State

E

Correct 
Action

E

AEXformer

Incorrect 
Action

E

Initial 
State

E

repelattract

Actual Desired State
Representation

AEXformer

D D

(b) LinSAES model.

Figure 4. LinSAES concept (a) and model (b).

model. We call this model LinSAES.

2.5. Connecting via Swapping

We will start by presenting method overview, followed
by details. Approach (in training mode) is illustrated in Fig-
ure 5.

Method overview: all model parameters (encoders (α, β)
and decoders (D)) are trained end-to-end by enforcing the
following. 1) Transformation Encoding. The initial and
final states are transformed into an initial state and a cor-
responding state-transformation code through an encoder.
This transformation code captures the changes or effects be-
tween the initial and final states. 2) Reconstruction using
Decoder. Given the initial state and the state-transformation



FI

I’

D

Initial 
State

Desired 
State

E E

𝜶

Correct 
Action

E

𝜷

F’ F

attract

attract

Figure 5. Connecting via Swapping. Here, we have not shown
using of incorrect action for better explanation and avoiding con-
fusion. However, in practice, we leverage incorrect actions.

code, a decoder reconstructs the final state. This decoder es-
sentially learns to generate the final state based on the initial
state and the transformation code. 3) Obtaining Transfor-
mation Code from Cross-sample Actions. Additionally,
a state-transformation code can be obtained from the ac-
tion (but from another sample) occurring between the initial
and final states. This is done through another encoder that
distills the transformation code from the action. Note that,
during training the final state is reconstructed using both
transformation codes—obtained from states and action. By
obtaining equivalent state-transformation codes both from
the states directly and from the actions, the model learns to
connect actions to their effects. The decoder then utilizes
this transformation code to reconstruct the final state from
the initial state, effectively capturing the impact of actions
on the state transition in the video data.

Method details: To explicitly isolate a n-dimensional
“transformation “code”, we pass the initial and final states
(each represented by m-dimensional features) through an
encoder α, which outputs a (m+n)-dimensional vector. We
enforce the condition that the first m elements of this vec-
tor represent the initial state and the remaining n elements
represent the transformation “code”. Now, using another
encoder (β), we distill a n-dimensional transformation code
from an action option. We swap the transformation code ob-
tained using states with that obtained from the action option.
A decoder (D) then reconstructs the final state from the ex-
tracted initial state and swaps the transformation code. All
encoders and decoders are trained by enforcing that the ex-
tracted initial state be similar to the ground truth initial state
and the reconstructed final state be similar to the ground
truth final state in case the transformation code was coming

from the correct action option (minimize the similarity if the
transformation code was from incorrect action option). This
approach is inspired by [5]. However, while their approach
disentangles human pose and appearance, our approach ex-
tends it to disentangle state-transformation for linking ac-
tions and their effects.

2.6. CLIP

For this baseline, we adopt the previously discussed
naive approach subsection 2.1. In this case, we use the
CLIP [6] representations for states and actions. Further, to
obtain a clip-level representation for action-clips, we aver-
age the frame-level representations. Inference process re-
mains as the Naive approach.

2.7. VideoChat2

VideoChat2 [3] is powerful video understanding foun-
dational model. It is trained on 20 challenging video un-
derstanding simultaneously. We evaluated various ways to
adopt VideoChat2 for our problem with the objective of
maximizing the performance on Action Selection. We ob-
tained best results with the following approach. First, we
provide the initial and the final states to the model along-
with the four action classes in language format, ask to iden-
tify the action taking place. Second, we ask the model to
identify the action class (from the four choices in language
format—these are nothing but the class names of the four
action options) taking place in the correct action-clip. Then,
we match the classes obtained from states and action-clips.
If there is a match and the predicted class is correct, we
consider that the model got the answer, else, we consider
the answer of the model as wrong.

2.8. VideoMAE

Mask autoencoding (MAE) might seem similar to Ac-
tion Selection, but there is a fundamental difference be-
tween them. MAE randomly masks patches without any
explicit attention to initial and final states, whereas Action
Selection particularly involves connecting actions and de-
sired state changes. Nonetheless, VideoMAE has achieved
strong results in video understanding. Therefore, for com-
pleteness, we consider VideoMAE as one of the baselines.
By design, VideoMAE cannot be directly used for our task,
so we adopt the previously discussed Naive approach, but
using VideoMAE as the backbone for Action Selection task.

3. Introduction to Action Quality Assessment
(AQA) and how it is connected to Effect-
Affinity Assessment

Definition of AQA. AQA is a fine-grained action analysis
task, where the models try to assess how well an action was



performed. Judging during Olympics diving can be a clas-
sic example of AQA. AQA requires paying attention to very
fine-grained details of action. For example, it involves ana-
lyzing how tight was the athlete’s form during somersaults,
how close the athlete’s feet were during twisting motion
in air, was the athlete under-/over-rotated during entry into
the water, how high the athlete jumped during take-off, etc.
Taking these into consideration, a score is given out to in-
dicate how good the athletes’ performance was or whether
the rules of the competition were followed.
Effect-Affinity Assessment and AQA. In our formula-
tion, Effect-Affinity Assessment involves discerning be-
tween very nearby effects, and determining how far is an
effect-frame from the action applied on an initial state.
To solve this task, the model learns to pay attention to
fine-grained details like what maneuvers the athlete ap-
plied/executed, and how that would result in what series of
poses, or how the athlete’s position would evolve as a re-
sult of their maneuvers. These details have an overlap with
the elements of interest in AQA. Therefore, we hypothesize
that representations learnt in solving our SSL CATE Effect-
Affinity Assessment should transfer well to AQA task.

4. Action-Effect Joint Attention Visualization
We use the best performing Analogical-Reasoning

model for attention visualization, employing a modified
GradCAM [7] to generate joint attention heatmaps over
states & actions. Specifically, we backpropagate the dot-
product of state-change vector & the action vector through
the initial, final, action branches into visual input space.

5. Further Action Selection performance anal-
ysis

1) We believe the Analogical model performed poten-
tially because explicitly computing the state change and
comparing with the action options might be more benefi-
cial.

2) We have also provided the classwise accuracies from
two of the best performing models: 1) Analogical Reason-
ing model; 2) LinSAES (learning linear state-action embed-
ding space) in the Figure 6. In both cases, we observed a
similar trend that the action classes on which the models
were most accurately connected actions and effects were
simple and single-step movements. Action classes where
the models struggled the most were composite and com-
plex involving multiple steps or sub-actions. These com-
posite actions may require the model to understand not only
individual actions but also their sequential dependencies
and temporal relationships. The increased complexity can
make it more challenging for the model to accurately pre-
dict the correct sequence of actions to achieve the desired
outcome. The easiest classes to connect were derived from

SSv2 dataset [2] representing common tasks or actions one
might encounter in daily life or simple mechanical tasks.
These actions focus on the manipulation and movement of
objects in various ways, often on flat surfaces. Most diffi-
cult to connect actions were from COIN dataset [8], often
associated with particular activities such as cooking, con-
struction, or assembly. These actions involve more specific
and varied tasks such as cutting, filling, inserting, and cook-
ing, indicating a wider scope of activities.

References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 1

[2] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski,
Joanna Materzynska, Susanne Westphal, Heuna Kim, Valentin
Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,
et al. The” something something” video database for learn-
ing and evaluating visual common sense. In Proceedings of
the IEEE international conference on computer vision, pages
5842–5850, 2017. 4

[3] Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang,
Yi Liu, Zun Wang, Jilan Xu, Guo Chen, Ping Luo, et al.
Mvbench: A comprehensive multi-modal video understand-
ing benchmark. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 22195–
22206, 2024. 3

[4] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji.
Bilinear cnn models for fine-grained visual recognition. In
Proceedings of the IEEE international conference on com-
puter vision, pages 1449–1457, 2015. 2

[5] Paritosh Parmar, Amol Gharat, and Helge Rhodin. Do-
main knowledge-informed self-supervised representations for
workout form assessment. In European Conference on Com-
puter Vision, pages 105–123. Springer, 2022. 3

[6] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 3

[7] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-
cam: visual explanations from deep networks via gradient-
based localization. International journal of computer vision,
128:336–359, 2020. 4

[8] Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng,
Danyang Zhang, Lili Zhao, Jiwen Lu, and Jie Zhou. Coin:
A large-scale dataset for comprehensive instructional video
analysis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1207–1216,
2019. 4

[9] Xiaolong Wang, Ali Farhadi, and Abhinav Gupta. Actions˜
transformations. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 2658–2667,
2016. 1



Figure 6. Classwise accuracies from Analogical Reasoning (AR) LinSAES (AEX) models. Easiest and most difficult classes are listed
below.


	. Dataset samples with and without object detections
	. Further details on Baseline Methods for Action Selection
	. Naive model
	. Treating Actions as Transformations
	. Modeling rich interactions between initial state & action (MoRISA)
	. LinSAES: Learning Linear State-Action Embedding Space
	. Connecting via Swapping
	. CLIP
	. VideoChat2
	. VideoMAE

	. Introduction to Action Quality Assessment (AQA) and how it is connected to Effect-Affinity Assessment
	. Action-Effect Joint Attention Visualization
	. Further Action Selection performance analysis

