
Looking at Model Debiasing through the Lens of Anomaly Detection
Supplementary Material

Vito Paolo Pastore1*, Massimiliano Ciranni1*, Davide Marinelli1, Francesca Odone1, Vittorio Murino1,2,3

1MaLGa, DIBRIS, University of Genoa, Italy 2Istituto Italiano di Tecnologia, Genoa, Italy 3University of Verona, Italy

S1. Additional Ablation Studies

S1.1 Contribution of the per-class custom threshold
τy

In our bias identification step, we customize the OCSVM
algorithm, manipulating its decision function to accommo-
date a custom per-class decision threshold τy . These thresh-
olds (different for each class) push the anomaly detectors
to reject samples as out-of-class (i.e., bias-conflicting) only
when they are highly confident, and thus better discriminat-
ing between bias-aligned and bias-conflicting samples. In
Table S.1, we report an ablation study on Corrupted CIFAR-
10 (for three considered bias correlation values ρ), evaluat-
ing the impact of using our custom thresholds or exploiting
the original formulation with the default threshold (which is
0).

Corrupted CIFAR-10 ρ = 0.995 ρ = 0.980 ρ = 0.950

Default
threshold

23.21± 0.07 30.80± 0.17 37.88± 0.35

Per-class custom
threshold τy(Ours) 27.26± 0.47 41.27± 0.26 50.48± 0.42

Table S.1. Average accuracies and standard deviations (over three
runs) on Corrupted CIFAR-10, where we ablate the usage of cus-
tom decision thresholds in the OCSVM anomaly detectors em-
ployed in the proposed bias identification step.

Although the default threshold can still provide reason-
able debiasing performance, the proposed per-class custom
thresholds lead to a significant improvement, ranging from
about +4% to 13%, at the different bias levels. These re-
sults support our intuition on the necessity of obtaining a
purer bias-conflicting prediction for improving debiasing
performance.

*These authors contributed equally.
Correspondence: vito.paolo.pastore@unige.it

non-biased CIFAR-10 Accuracy

ERM+CE 84.98± 0.35
MoDAD 82.87± 0.47

Table S.2. Impact of applying MoDAD on a model trained with
the original version of CIFAR-10. Reported means and standard
deviations are computed from three independent runs.

S1.2 Sensitivity to different anomaly detection al-
gorithms

In Figure S.1, we report the impact on Corrupted CIFAR-
10 in terms of average accuracy of using different anomaly
detection (AD) algorithms for bias correlation values ρ =
0.980 and ρ = 0.995 (in addition to the ρ = 0.950 case
already provided in Section 4.4 of the main paper). The
comparison involves the same algorithms indicated in the
main paper, i.e. OCSVM, Local Outlier Factor [1], Isola-
tion Forest [6], and Robust Covariance Estimator [12].

As already noticed for the ρ = 0.950 case, even with a
higher bias correlation, there are no significant differences
in performance among the several AD methods. We notice
only a slight decrease in the performance for the explored
detectors, which remains in the range of 2-3% with respect
to the OCSVM. This empirically proves that even when the
bias correlation level increases, different anomaly detectors
behave similarly.

S1.3 MoDAD impact in case of non-biased datasets

Our method (MoDAD) is designed to be applied to a bi-
ased model, i.e., on a model that fails to generalize even
when properly trained and tuned, suggesting the presence
of bias in data or dramatic distribution shifts. In such a
case, MoDAD has a significant impact, succeeding in re-
ducing the bias effect and debiasing the model. However,
in general, we do not know whether a dataset is biased or
not. Hence, we are interested in assessing the effect of
MoDAD when applied to an unbiased model, i.e., a model
trained on an unbiased dataset. Thus, we run the two steps

1



OCSVM LOF IFO COV
Anomaly Detectors

0

5

10

15

20

25

30

35

40

Ac
cu

ra
cy

(a) ρ = 0.980.

OCSVM LOF IFO COV
Anomaly Detectors

0

5

10

15

20

25

Ac
cu

ra
cy

(b) ρ = 0.995.

Figure S.1. MoDAD average accuracy over three different runs with different anomaly detection algorithms on Corrupted CIFAR-10.

Input Model Average Accuracy

GCE Model 38.35± 0.35
Biased ERM 50.48±±0.62

Table S.3. MoDAD’s performance on Corrupted CIFAR10 (ρ =
0.950) with different input models for the debiasing step.

of MoDAD on the original non-biased version of CIFAR-
10 and estimate average accuracy on the test set. As we can
see in Table S.2, our debiasing method affects only slightly
the performance on the test set with respect to the base-
line ERM+CE trained model: we experience just a drop of
∼ 2%, which is significantly lower than the average bene-
fit that we can get when using MoDAD on actually biased
datasets.

S1.4 Input Model for the Debiasing Step

As reported in Section 3.3 of the main paper, our debias-
ing approach consists in fine-tuning a model trained with a
vanilla ERM on the biased datasets. However, an alternative
can be fine-tuning the intentionally biased model (trained
with the GCE) utilized in the first step of our proposed ap-
proach. In Table S.3 we report a comparison between the
two different input models for the debiasing step, on the
Corrupted CIFAR-10 dataset (with ρ = 0.950). Fine-tuning
the GCE model corresponds to a drop of ∼ 12%. This is
expected, as the GCE model is intentionally and extremely
biased by design, so it is more challenging to mitigate its
bias dependency with respect to the biased Vanilla ERM
model.

S2. Implementation Details
The code supporting this research and its experi-

ments is implemented in Python [14], with the support
of Pytorch and Torchvision [8, 10] for data pre-
processing, neural network implementation, training, and
evaluation. For the OCSVM algorithm (see Section 3 of
the main paper), we rely on the open-source implementa-
tion available from Scikit-Learn [11]. Additionally,
generic numerical operations and data visualization are per-
formed exploiting Numpy [2] and Matplotlib [3] re-
spectively.

S2.1 Data Pre-Processing

Input images are square-resized to a pixel resolution
of 224x224 for BAR, Waterbirds, and BFFHQ. Corrupted
CIFAR-10 images are instead kept at their original resolu-
tion of 32x32 pixels, following [4, 5, 9]. Regardless of the
dataset, images are normalized to have RGB values between
0 and 1. Additionally, we replicate the same augmentations
on the training images of Corrupted CIFAR-10, BAR, and
BFFHQ that are found in [4, 5, 9], i.e.:

• Corrupted CIFAR-10

1. RandomCropping((32, 32))

2. Padding((4, 4))

3. RandomHorizontalFlip(p=0.5)

• BAR

1. RandomResizedCrop((224, 224))

2. RandomHorizontalFlip(p=0.5)

3. ImageNet Standardization



• BFFHQ

1. Resize((224, 224))

2. Padding((4, 4))

3. ImageNet Standardization

During testing, we apply only square resizing and ImageNet
standardization for BAR and BFFHQ. Concerning Water-
birds, we only perform square resizing of all input images
with a target resolution of 224x224 pixels, followed by Im-
ageNet standardization. We rely on Torchvision [8] for
all the mentioned pre-processing operations.

S2.2 Training Details

In every experiment, we adopt AdamW as optimizer
[7], with an initial learning rate of 10−5 for the debiasing
step. For the bias-identification step involving GCE pre-
training, we use an initial learning rate of 10−3 for Cor-
rupted CIFAR-10 and 10−5 for the other datasets. The
ERM models trained with Cross-Entropy loss (ERM+CE),
are trained with a fixed learning rate of 10−3 and a mini-
batch random sampler weighted on class populations. Re-
garding batch sizes, for the sake of fair comparisons, we
follow what is found in the existing literature [5,9,13]: 256
for Corrupted CIFAR-10 and BAR, 128 for Waterbirds, and
64 for BFFHQ.
Network Embeddings. To extract the network embed-
dings employed in the proposed bias identification step (see
Sec. 3.2 of the main paper), we consider the very last layer
before the softmax layer that performs the final classifica-
tion. This corresponds to the additional layer we attach to
the ResNet backbone (see Training Details in Sec. 4.3 of the
main paper), which is a linear layer with 128 neurons put
after the ResNet’s last pooling layer, followed by a ReLU
non-linearity. This is fixed regardless of the dataset and the
backbone being a ResNet-18 (Corrupted CIFAR-10, BAR,
BFFHQ) or a ResNet-50 (Waterbirds).
Training Iterations and Regularization. The bias-
identification model trained with GCE loss is trained for
100 epochs in the case of Corrupted CIFAR-10, 30 epochs
for BAR and BFFHQ, and 50 epochs for Waterbirds. The
Debiasing step is performed for 100 epochs in the experi-
ments for Corrupted CIFAR-10, while 50 epochs are em-
ployed for BAR, Waterbirds, and BFFHQ. We set a fixed
number of epochs and do not employ any implicit regu-
larization technique during training, as we cannot assume
datasets-wise accordance regarding distribution shifts in the
validation set.

References
[1] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng,

and Jörg Sander. Lof: Identifying density-based local out-
liers. SIGMOD Rec., 29(2):93–104, may 2000. 1

[2] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.
Array programming with NumPy. Nature, 585(7825):357–
362, Sept. 2020. 2

[3] J. D. Hunter. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007. 2

[4] Eungyeup Kim, Jihyeon Lee, and Jaegul Choo. Biaswap:
Removing dataset bias with bias-tailored swapping augmen-
tation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 14992–15001, 2021. 2

[5] Jungsoo Lee, Eungyeup Kim, Juyoung Lee, Jihyeon Lee, and
Jaegul Choo. Learning debiased representation via disentan-
gled feature augmentation. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, vol-
ume 34, pages 25123–25133. Curran Associates, Inc., 2021.
2, 3

[6] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isola-
tion forest. In Proceedings of the 2008 Eighth IEEE In-
ternational Conference on Data Mining, ICDM ’08, page
413–422, USA, 2008. IEEE Computer Society. 1

[7] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2019. 3

[8] TorchVision maintainers and contributors. Torchvision: Py-
torch’s computer vision library. https://github.com/
pytorch/vision, 2016. 2, 3

[9] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and
Jinwoo Shin. Learning from failure: De-biasing classifier
from biased classifier. Advances in Neural Information Pro-
cessing Systems, 33:20673–20684, 2020. 2, 3

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates,
Inc., 2019. 2

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011. 2

[12] Peter Rousseeuw and Katrien Driessen. A fast algorithm for
the minimum covariance determinant estimator. Technomet-
rics, 41:212–223, 08 1999. 1

https://github.com/pytorch/vision
https://github.com/pytorch/vision


[13] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and
Percy Liang. Distributionally robust neural networks. In In-
ternational Conference on Learning Representations, 2019.
3

[14] Guido Van Rossum and Fred L. Drake. Python 3 Reference
Manual. CreateSpace, Scotts Valley, CA, 2009. 2


