
Enhancing Image Layout Control with Loss-Guided Diffusion Models:
Supplementary Materials

Zakaria Patel
LeapTools

1255 Bay St. Unit 403, Toronto, ON M5R 2A9
zakaria@leaptools.com

Kirill Serkh
University of Toronto

40 St. George St., Toronto, ON M5S 2E4
kserkh@math.toronto.edu

A. Diffusion Models
A.1. Denoising Diffusion Probabilistic Models

Diffusion models [4] are characterized by two principle
algorithms. The first is the forward process, wherein the
data x0 is gradually corrupted by Gaussian noise until it
becomes pure noise, which we denote by xT . The reverse
process moves in the opposite direction, attempting to re-
cover the data by iteratively removing noise. The denoiser
ϵθ(xt, t) is typically a UNet [11] which accepts an image
xt, and predicts its noise content ϵ. Removing a fraction of
this noise yields a slightly denoised image xt−1. Repeating
this process over T steps produces a noise-free image x0.

Operating directly on the image xt in pixel-space is com-
putationally expensive. As an alternative, latent diffusion
models have been proposed to curtail this high cost, in
which the denoising procedure is performed in latent space,
whose dimensionality is typically much lower than pixel
space. Stable Diffusion [10] is one example of a latent dif-
fusion model which achieves state-of-the-art performance
on various image synthesis tasks. It leverages a powerful
autoencoder to project to and from latent space, where the
standard denoising procedure is performed. Images in la-
tent space are typically denoted by zt, and the encoder and
decoder are denoted by E and D, respectively, zt = E(xt)
and xt = D(zt).

During training, samples from the true data distribution
q(x0) are corrupted via the forward process. By training a
diffusion model to learn a reverse process in which it itera-
tively reconstructs these noisy samples into noise-free sam-
ples, it is possible to generate images from pure noise at
inference time. This corresponds to sampling from an ap-
proximation pθ(x0) to the data distribution, q(x0). This
generation process can be guided by introducing an addi-
tional input vector y, which is often a text prompt. In this
case, the model produces samples from an approximation
pθ(x0|y) to the conditional distribution q(x0|y).

In denoising diffusion probabilistic models (DDPM) [4],
the forward process is characterized by the Markov chain

q(xt|xt−1) ∼ N (xt;
√
1− βtxt−1, βtI), for some noise

schedule βt. In this case, q(xt|x0) ∼ N (xt;
√
ᾱtx0, (1 −

ᾱt)I), where ᾱt =
∏t

s=1 αs and αt = 1− βt. The reverse
process is typically modeled by a learned Markov chain
pθ(xt−1|xt) ∼ N (xt−1;µθ(xt, t), σ

2
t I), where σt is an un-

trained time dependent constant, usually with β̃t ≤ σ2
t ≤ βt

and β̃t = βt(1− ᾱt−1)/(1− ᾱt), or with σt simply chosen
equal to

√
βt.

It is not efficient to optimize the log-likehood
E[− log pθ(x0)] directly, since computing pθ(x0) requires
marginalizing over x1:T . Instead, one can use importance
sampling to write

pθ(x0) = Eq(x1:T |x0)

[
pθ(x0:T )

q(x1:T |x0)

]
. (1)

Then, by Jensen’s inequality,

− log pθ(x0) ≤ Eq(x1:T |x0)

[
− log

pθ(x0:T )

q(x1:T |x0)

]
. (2)

The right hand side is the usual evidence lower bound
(ELBO), which is minimized instead. Ho et al. [4] show
that minimizing the ELBO is equivalent to minimizing

Et[λ(t)Eq(x0),ϵ[∥ϵθ(xt, t)− ϵ∥22]], (3)

for some positive function λ(t), where ϵ ∼ N (0, I),
xt(x0, ϵ) =

√
ᾱtx0 +

√
1− ᾱtϵ, and

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)
)
. (4)

A.2. Score Matching

Since q(xt|x0) is a normal distribution, we know that

∇xt log q(xt|x0) = − ϵ√
1− ᾱt

. (5)

Thus, minimizing (3) is equivalent to minimizing

Et[λ(t)Eq(x0)Eq(xt|x0)[∥sθ(xt, t)−∇xt
log q(xt|x0)∥22]],

(6)
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for some positive function λ(t), where

sθ(xt, t) := − ϵθ(xt, t)√
1− ᾱt

. (7)

It is known that this loss is minimized when sθ(xt, t) =
∇xt

log q(xt) [14], so given enough parameters, sθ(xt, t)
will converge to ∇xt

log q(xt) almost everywhere. Given
an approximation to the score function, it is possible to sam-
ple from pθ(x0) using annealed Langevin dynamics [12].

Letting the forward process posterior mean µ̃t be defined
by q(xt−1|xt,x0) ∼ N (xt−1; µ̃t(xt,x0), β̃tI), we have
that

µ̃t(xt,x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (8)

(see [4]). With this, the mean µθ(xt, t) of the reverse pro-
cess can be understood as

µθ(xt, t) = µ̃t(xt, Dθ(xt, t)), (9)

where

Dθ(xt, t) :=
1√
ᾱt

(xt + (1− ᾱt)sθ(xt, t)) (10)

is an approximation to Tweedie’s formula

1√
ᾱt

(xt + (1− ᾱt)∇xt
log q(xt))

=
1√
ᾱt

Eq[
√
ᾱtx0|xt] = Eq[x0|xt]

(11)

(see [3]).

A.3. Stochastic Differential Equations

Song et al. [13] showed that the forward process of
DDPM can viewed as a discretization of the stochastic dif-
ferential equation (SDE)

dx = −1

2
β(t)x dt+

√
β(t) dw, (12)

where w denotes the Wiener process. There, the authors
point out that any SDE of the form dx = f(x, t) + g(t)dw,
where x0 ∼ p0(x0) can be reversed by the SDE dx =
(f(x, t)− g(t)2∇x log pt(x)) dt+ g(t) dw̄, where w̄ is the
standard Wiener process in the reverse time direction, and
where xT ∼ pT (xT ). Furthermore, each SDEs admits a
family of related SDEs that share the same marginal distri-
butions pt(xt). One of these SDEs is purely deterministic,
and is known as the probability flow ordinary differential
equation (ODE).

If the score function sθ(xt, t) is available, then it is pos-
sible to sample from pθ(x0) by solving the probabily flow
ODE, starting with samples from pθ(xT ). This results in a
deterministic mapping from noises images xT to clean im-
ages x0. This sampling process can be performed quickly
with the aid of ODE solvers [8].

A.4. Classifier-Free Guidance

In order to generate images following a user-supplied
text prompt, the denoiser ϵθ(zt, t,y) of a latent diffusion
model is trained with an additional input given by a se-
quence of token embeddings y = {y1,y2, . . . ,yk}. A sin-
gle denoiser, usually a UNet, is trained over a variety of text
prompts, and the token embeddings influence the denoiser
by a cross-attention mechanism in both the contractive and
expansive layers. Ho and Salimans [5] found that, rather
than sampling images using the conditional denoiser alone,
better results can be obtained by taking a combination of
conditional and unconditional noise estimates,

ϵ̃θ(zt, t,y) = (1 + w)ϵθ(zt, t,y)− wϵθ(zt, t, {}), (13)

where w represents the intensity of the additive term
ϵθ(zt, t,y) − ϵθ(zt, t, {}). For −1 ≤ w ≤ 0, this
noise prediction can be viewed as an approximation to
(−σt times) the score function of the marginal distribu-
tion p̃θ(zt|y) ∝ pθ(zt|y)1+wpθ(zt|{})−w. In classifier-
free guidance (CFG), w ≫ 0, which does not have a simple
interpretation in terms of the marginal distributions of the
new denoising process.

B. Additional Experiments
We provide two additional sets of comparisons between

our proposed method (iLGD), BoxDiff [16], Chen et al. [2],
MultiDiffusion [1], and Stable Diffusion [10]. In Fig-
ure B.1, we compare the three methods using same prompts
and bounding boxes as in Figure 3, but using a different
random seed for each set of images. In Figure B.2, we com-
pare the methods using an entirely new set of prompts and
bounding boxes. We also provide a set of examples gener-
ated using just our proposed method (iLGD) in Figure B.3.

C. Detailed Methods
Implementation Details We implement our method, il-
lustrated graphically in Figure C.1, on the official Stable
Diffusion v1.4 model [10] from HuggingFace. All images
are generated using 50 denoising steps and a classifier-free
guidance scale of 7.5, unless otherwise noted. We use
the noise scheduler LMSDiscreteScheduler [6] pro-
vided by HuggingFace. Experiments are conducted on an
NVIDIA TESLA V100 GPU.

We perform attention injection over all attention maps.
When performing injection, we resize the mask m to the ap-
propriate resolution, depending on which layer of the UNet
the attention maps are taken from. For loss guidance, we
again use all of the model’s attention maps, but resize them
16 × 16 resolution, and compute the mean of each map
over all pixels. We apply the softmax function over these
means to obtain a weight vector w, where each entry wj is
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Figure B.1. A comparison of iLGD against BoxDiff, Chen et al., MultiDiffusion, and Stable Diffusion, using the same prompts as Figure 3
but different random seeds, with the seed kept the same across each set of images.
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Figure B.2. A comparison of iLGD against BoxDiff, Chen et al., MultiDiffusion, and Stable Diffusion. The random seed kept the same
across each set of images.

the scalar weight associated with the j-th resized attention
map. Finally, we obtain the attention map At by taking a
weighted average over all resized attention maps at time t,
using the appropriate weight wj for each map.

When attempting to control the layout of a generated im-
age, we find that skipping the first step, so that it remains a
standard denoising step, leads to better results. We do this
for all experiments conducted in this paper which use ei-
ther injection or loss guidance or both. In iLGD, we use
η = 0.48, ν′ = 0.75, tloss = 25, and tinject = 10, unless
otherwise noted. In our ablation experiments, we keep the
injection strength at ν′ = 0.75 when performing just at-
tention injection. When performing just loss guidance, we
increase the loss-guidance strength to η = 1, in order to
make loss guidance alone exert sufficient influence over the
final image layouts.

In our comparisons with BoxDiff, we maintain the de-
fault parameters the authors provide in their implementa-
tion. We start with αT = 20, which decays linearly to
α0 = 10, and perform guidance for 25 iterations out of a
total of 50 denoising steps.

In our comparisons with the method of Chen et al., we
also maintain the default parameters the authors provide in
their implementation, setting the loss scale factor to η = 30.

Evaluation with YOLOv4 In this section, we describe
in detail how we obtain the AP@50 scores in Table 2. In
classical object detection, a model is trained to detect and
localize objects of certain classes in an image, typically by
predicting a bounding box which fully encloses the object.
The accuracy of the model’s predicted bounding box, Bp,
is evaluated by comparison to the corresponding ground
truth bounding box, Bgt. More specifically, we compute
the intersection over union (IOU) over the pair of bounding
boxes:

IOU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
. (14)

The IOU is then compared to a threshold t, such that, if
IOU ≥ t, then the detection is classified as correct. If not,
then the detection is classified as incorrect. In our case, we
follow Li et al. [7] and treat the object detection model as
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Figure B.3. Injection loss guidance (iLGD) uses attention injection and loss guidance to generate high quality images conforming to a
given layout. The first column of each set of images depicts the bounding box input to the diffusion model. The second column is the
output of Stable Diffusion alone. The third column is our method, using the same random seed.

an oracle, where we assume that it provides the bounding
boxes of objects in a given image with perfect accuracy. In
particular, we first define a layout through a set of ground
truth bounding boxes, describing the desired positions of
each object. We then generate an image according to this
layout, and subsequently apply the object detection model
to the generated image to obtain a set of predicted bounding
boxes. Finally, to evaluate how similar the layout of the
generated image is to the desired layout, we compare each
predicted bounding box, Bp, to the corresponding ground
truth bounding box, Bgt, by computing their IOU. We use a
IOU threshold of 0.5.

To calculate the average precision, we first need to com-
pute the number of true positives (TP), false positives (FP),
and false negatives (FN). We count a false negative when
no detection is made on the image, even though a ground
truth object exists, or when the detected class is not among
the ground truth classes. We also count a false negative as
well as a false positive when the correct detection is made,
but IOU < 0.5, and a true positive when IOU ≥ 0.5. Using
these quantities, we compute the precision P and recall R
as:

P =
TP

TP + FP
, (15)

R =
TP

TP + FN
. (16)

We repeat this for classifier confidence thresholds of 0.15
to 0.95, in steps of 0.05, so that we end up with 17 values
for precision and recall, respectively. We then construct a
precision-recall curve, and compute the average precision
using 11-point interpolation [9]:

AP11 =
1

11

∑
R∈{0,0.1,...,0.9,1}

Pinterp(R), (17)

where

Pinterp(R) = max
R̃≥R

P (R̃). (18)

Image Quality Assessment Wang et al. [15] suggest us-
ing the pair {good photo, bad photo} instead of {high qual-
ity, low quality} to measure quality, as they find that it cor-
responds better to human preferences. However, we choose
the latter to remain agnostic to the image’s style, as we be-
lieve the former carries with it a stylistic bias, due to the
word “photo.”



Figure C.1. A graphical depiction of injection loss guidance
(iLGD).

Contrast Calculation We calculate the RMS contrast by
using OpenCV’s .std() method on a greyscale image.

Saturation Calculation We calculate the saturation by
working in HSV space and using OpenCV’s .mean()
method on the image’s saturation channel.

References
[1] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel.

Multidiffusion: Fusing diffusion paths for controlled image
generation. 202:1737–1752, 2023. 2

[2] Minghao Chen, Iro Laina, and Andrea Vedaldi. Training-free
layout control with cross-attention guidance. In IEEE Wint.
Conf. Appl., pages 5343–5353, 2024. 2

[3] Bradley Efron. Tweedie’s formula and selection bias. J. Am.
Stat. Assoc., 106(496):1602–1614, 2011. 2

[4] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. volume 33, pages 6840–6851,
2020. 1, 2

[5] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. In NeurIPS, Workshop: Deep Generative Mod-
els and Downstream Applications, 2021. 2

[6] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. In NeurIPS, volume 35, 2022. 2

[7] Zejian Li, Jingyu Wu, Immanuel Koh, Yongchuan Tang, and
Lingyun Sun. Image synthesis from layout with locality-
aware mask adaption. In ICCV, pages 13819–13828, 2021.
3

[8] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffusion
probabilistic model sampling in around 10 steps. In NeurIPS,
volume 35, 2022. 2

[9] Rafael Padilla, Sergio L Netto, and Eduardo AB Da Silva.
A survey on performance metrics for object-detection algo-
rithms. In Int. Conf. Syst. Signal., pages 237–242. IEEE,
2020. 4

[10] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022. 1, 2

[11] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, pages 234–241, 2015. 1

[12] Yang Song and Stefano Ermon. Generative modeling by esti-
mating gradients of the data distribution. NeurIPS, 32, 2019.
2

[13] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. In ICLR, 2021. 2

[14] Pascal Vincent. A connection between score matching and
denoising autoencoders. Neural Comput., 23(7):1661–1674,
2011. 2

[15] Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Ex-
ploring clip for assessing the look and feel of images. In
AAAI, volume 37, pages 2555–2563, 2023. 4

[16] Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wen-
tian Zhang, Yefeng Zheng, and Mike Zheng Shou. Boxdiff:
Text-to-image synthesis with training-free box-constrained
diffusion. In ICCV, pages 7452–7461, 2023. 2


	. Diffusion Models
	. Denoising Diffusion Probabilistic Models
	. Score Matching
	. Stochastic Differential Equations
	. Classifier-Free Guidance

	. Additional Experiments
	. Detailed Methods

