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1. Introduction
This document contains information about different ver-

sions of the vanilla transformer architecture, presented in
Table-4. It also includes details on the training configu-
ration for transfer learning, task learning, and fine-tuning
tasks. Table-5 displays the dataset information used for
transformer learning. In the results section, we present the
fine-tuned results for models trained on 224 x 224 and fine-
tuned on 384 x 384, as depicted in Table 7. Additionally,
we report the object detection performance of the GFL [10]
model and Cascade Mask R-CNN [1] on the MS COCO
val2017 dataset, which demonstrates an improvement in
performance, as shown in Table- 6. We have compared the
results of different training processes like Deit and Deit-III
as shown in the table- 2. We have included scaling results
like a large and huge model as shown in the table- 3. We
provide comparison results of ImageNet Top-1 Accuracy
(%) vs GFLOPs and Parameters(M) of various models in
Vanilla and Hierarchical architecture as shown in figure-2
and figure-3.

Table 1. This table shows the SpectFormer performance based
on different model size. The first part shows results on vanilla
architecture for Fourier Gating Network based model. The second
part shows results for Hierarchical architecture indicated by ’H’.
These results are for α = 4.

Model
Params

(M)
FLOPs

(G)
Top-1
(%)

Top-5
(%)

SpectFormer-T 9.15 1.8 76.89 93.38
SpectFormer-XS 20.02 4.0 80.21 94.76
SpectFormer-S 32.56 6.6 81.70 95.64
SpectFormer-B 57.15 11.5 82.12 95.75
SpectFormer-H-FN-S 21.17 3.9 84.02 96.77
SpectFormer-H-FN-B 31.99 6.3 85.04 97.37
SpectFormer-H-WGN-S 22.59 3.9 83.7 96.56
SpectFormer-H-WGN-B 33.42 6.3 84.57 96.97
SpectFormer-H-S 22.22 3.9 84.25 96.93
SpectFormer-H-B 33.05 6.3 85.05 97.30
SpectFormer-H-L 54.67 12.7 85.7 97.52

Table 2. This table shows the SpectFormer performance based on
the Deit-iii [20] and the Deit [19] training recipe for image size
2242.

Model Top-1(%) Top-5(%)
Deit-s 79.8 95.0
SpectFormer-XS(Deit) 80.21 94.76
SpectFormer-S(Deit) 81.70 95.64
ViT-S (Deit-iii) 80.7 95.12
SpectFormer-XS(Deit-iii) 81.32 95.39
SpectFormer-S(Deit-iii) 82.10 95.96

Table 3. This table shows the SpectFormer performance for Large
and Huge Model for image size 2242.

Model Params FLOPs Top-1(%) Top-5(%)
SpectFormer-H-L 54.67M 12.7G 85.7 97.52
SpectFormer-H-H 156.43M 36.57G 86.16 97.92

2. Experiment

2.1. Dataset and Training setup for Image classifi-
cation task

We describe the training process of the image recogni-
tion task using the ImageNet1K benchmark dataset, which
includes 1.28 million training images and 50K validation
images belonging to 1,000 categories. The vision back-
bones are trained from scratch using data augmentation
techniques like RandAug, CutOut, and Token Labeling ob-
jectives with MixToken. The performance of the trained
backbones is evaluated using both top-1 and top-5 accura-
cies on the validation set. The optimization process involves
using the AdamW optimizer with a momentum of 0.9, 10
epochs of linear warm-up, and 310 epochs of cosine decay
learning rate scheduler. The batch size is set to 128 and is
distributed on 8 A100 GPUs. The learning rate and weight
decay are fixed at 0.00001 and 0.05, respectively.

1



Table 4. In this table, we present detailed configurations of various versions of SpectFormer for the vanilla transformer architecture. The
table provides information on the number of heads, embedding dimensions, the number of layers in each variant, and the training resolution.
For hierarchical SpectFormer-H models, we provide information in Table-1 of the main paper, which includes details for four stages. The
FLOPs (floating-point operations) are calculated for both 224× 224 and 384× 384 input sizes. For the vanilla SpectFormer architecture,
we use four spectral layers with α = 4, while the remaining attention layers are equal to (L− α).

Model #Layers #heads # Dim Params (M) Resolution FLOPs (G)

SpectFormer-Ti 12 4 256 9 224 1.8
SpectFormer-XS 12 6 384 20 224 4.0
SpectFormer-S 19 6 384 32 224 6.6
SpectFormer-B 19 8 512 57 224 11.5

SpectFormer-XS 12 6 384 21 384 13.1
SpectFormer-S 19 6 384 33 384 22.0
SpectFormer-B 19 8 512 57 384 37.3

Table 5. This table presents information about datasets used for transfer learning. It includes the size of the training and test sets, as well
as the number of categories included in each dataset such as CIFAR-10 [9], CIFAR-100 [9], Flowers-102 [15], Stanford Cars [8].

Dataset CIFAR-10 CIFAR-100 Flowers-102 Stanford Cars

Train Size 50,000 50,000 8,144 2,040
Test Size 10,000 10,000 8,041 6,149

#Categories 10 100 196 102

Table 6. The performances of various vision backbones on COCO val2017 dataset for the downstream task of object detection. Four kinds
of object detectors, i.e., GFL [10], and Cascade Mask R-CNN [1] in mmdetection [2], are adopted for evaluation. We report the bounding
box Average Precision (AP b) in different IoU thresholds.

Backbone Method AP b AP b
50 AP b

75

ResNet50 [7]

GFL [10]

44.5 63.0 48.3
Swin-T [13] 47.6 66.8 51.7

PVTv2-B2 [21] 50.2 69.4 54.7
SpectFormer-H-S-FN 50.3 70.0 55.2

ResNet50 [7] Cascade
Mask

R-CNN
[1]

46.3 64.3 50.5
Swin-T [13] 50.5 69.3 54.9

PVTv2-B2 [21] 51.1 69.8 55.3
SpectFormer-H-S-FN 51.5 70.2 56.3

2.2. Training setup for Transfer Learning

To test the effectiveness of our architecture and learned
representation, we evaluated vanilla SpectFormer on com-
monly used transfer learning benchmark datasets, including
CIFAR-10 [9], CIFAR100 [9], Oxford-IIIT-Flower [15] and
Standford Cars [8]. Our approach followed the methodol-
ogy of previous studies [4, 16–19], where we initialized the
model with ImageNet pre-trained weights and fine-tuned it
on the new datasets. In table-7 of the main paper, we have
presented a comparison of the transfer learning performance
of our basic and best models with state-of-the-art CNNs and
vision transformers. The transfer learning setup employs a
batch size of 64, a learning rate (lr) of 0.0001, a weight-

decay of 1e-4, a clip-grad of 1, and warmup epochs of 5. We
have utilized a pre-trained model trained on the Imagenet-
1K dataset, which we have fine-tuned on the transfer learn-
ing dataset specified in table-5 for 1000 epochs.

2.3. Task Learning: Object Detection

Training setup: In this section, we examine the pre-
trained SpectFormer-H-small behavior on COCO dataset
for two downstream tasks that localize objects ranging from
bounding-box level to pixel level, i.e., object detection and
instance segmentation. Two mainstream detectors, i.e.,
RetinaNet [11] and Mask R-CNN [6] as shown in table-8
of the main paper, and two state-of-the-art detectors i.e.,
GFL [10], and Cascade Mask R-CNN [1] in mmdetec-



Table 7. We conducted a comparison of various transformer-style architectures for image classification on ImageNet. This includes vision
transformers [19], MLP-like models [12, 18], spectral transformers [16] and our SpectFormer models, which have similar numbers
of parameters and FLOPs. The top-1 accuracy on ImageNet’s validation set, as well as the number of parameters and FLOPs, are reported.
All models were trained using 224× 224 images. We used the notation ”↑384” to indicate models fine-tuned on 384× 384 images for 30
epochs.

Model
Params

(M)
FLOPs

(G) Resolution
Top-1
(%)

Top-5
(%)

gMLP-Ti [12] 6 1.4 224 72.0 -
DeiT-Ti [19] 5 1.2 224 72.2 91.1
GFNet-Ti [16] 7 1.3 224 74.6 92.2
SpectFormer-T 9 1.8 224 76.8 93.3

ResMLP-12 [18] 15 3.0 224 76.6 -
GFNet-XS [16] 16 2.9 224 78.6 94.2
SpectFormer-XS 20 4.0 224 80.2 94.7

DeiT-S [19] 22 4.6 224 79.8 95.0
gMLP-S [12] 20 4.5 224 79.4 -
GFNet-S [16] 25 4.5 224 80.0 94.9
SpectFormer-S 32 6.6 224 81.7 95.6

ResMLP-36 [18] 45 8.9 224 79.7 -
GFNet-B [16] 43 7.9 224 80.7 95.1
gMLP-B [12] 73 15.8 224 81.6 -
DeiT-B [19] 86 17.5 224 81.8 95.6
SpectFormer-B 57 11.5 224 82.1 95.7

GFNet-XS↑384 [16] 18 8.4 384 80.6 95.4
GFNet-S↑384 [16] 28 13.2 384 81.7 95.8
GFNet-B↑384 [16] 47 23.3 384 82.1 95.8
SpectFormer-XS↑384 21 13.1 384 82.1 95.7
SpectFormer-S↑384 33 22.0 384 83.0 96.3
SpectFormer-B↑384 57 37.3 384 82.9 96.1

Table 8. Detailed architecture specifications for three variants of our SpectFormer with different model sizes, i.e., SpectFormer-S (small
size), SpectFormer-B (base size), and SpectFormer-L (large size). Ei, Gi, Hi, and Ci represent the expansion ratio of the feed-forward
layer, the spectral gating number, the head number, and the channel dimension in each stage i, respectively.

Size SpectFormer-H-S SpectFormer-H-B

Stage 1 H
4 × W

4

 E1 = 8
G1 = 1
C1 = 64

×2 ,

 E1 = 8
H1 = 2
C1 = 64

×1

 E1 = 8
G1 = 1
C1 = 64

×2,

 E1 = 8
H1 = 2
C1 = 64

×1

Stage 2 H
8 × W

8

 E2 = 8
G2 = 1
C2 = 128

×2 ,

 E2 = 8
H2 = 4
C2 = 128

×2

 E2 = 8
G2 = 1
C2 = 128

×2,

 E2 = 8
H2 = 4
C2 = 128

×2

Stage 3 H
16 × W

16

 E3 = 4
H3 = 10
C3 = 320

×6

 E3 = 4
H3 = 10
C3 = 320

×12

Stage 4 H
32 × W

32

 E4 = 4
H4 = 14
C4 = 448

×3

 E4 = 4
H4 = 16
C4 = 512

×3

tion [2] in this supplementary doc. We are employed for
each downstream task, and we replace the CNN backbones

in each detector with our SpectFormer-H-small for evalua-
tion. Specifically, each vision backbone is first pre-trained



Figure 1. The figure shows the top-5 class prediction probability scores for Deit [19], GFNet [16], and our SpectFormer model, indicating
that SpectFormer predicts the ’Zebra’ class (Top-1 Class) with greater confidence than GFNet and Deit.

over ImageNet1K, and the newly added layers are initial-
ized with Xavier [5]. Next, we follow the standard setups in
[13] to train all models on the COCO train2017 (∼118K im-
ages). Here the batch size is set as 16, and AdamW [14] is
utilized for optimization (weight decay: 0.05, initial learn-
ing rate: 0.0001, betas=(0.9, 0.999)). We used learning rate
(lr) configuration with step lr policy, linear warmup at ev-
ery 500 iterations with warmup ration 0.001. All models
are finally evaluated on the COCO val2017 (5K images).
For state-of-the-art models like GFL [10], and Cascade
Mask R-CNN [1], we utilize 3 × schedule (i.e., 36 epochs)
with the multi-scale strategy for training, whereas for Reti-
naNet [11] and Mask R-CNN [6] we utilize 1 × schedule
(i.e., 12 epochs).

2.4. Training setup for Fine-tuning task

Our main experiments are conducted on ImageNet [3],
a popular benchmark for large-scale image classification.
To ensure a fair comparison with previous research [16,
18, 19], we adopt the same training details for our Spect-
Former models. For the vanilla transformer architecture
(SpectFormer), we use the hyper-parameters recommended
by the GFNet implementation [16], and for the hierar-
chical architecture (SpectFormer-H), we use the hyper-
parameters recommended by the WaveVit implementa-
tion [22]. During fine-tuning at higher resolutions, we use
the hyper-parameters recommended by the GFNet imple-
mentation [16] and train our models for 30 epochs. All
models are trained on a single machine equipped with
8 A100 GPUs. In our experiments, we compared the
fine-tuning performance of our models with GFNet [16].
Our observations indicate that our SpectFormer model out-

performs GFNet’s base spectral network. Specifically,
SpectFormer-S(384) achieves a performance of 83.0%,
which is 1.2% higher than GFNet-S(384), as shown in Ta-
ble 7. Similarly, SpectFormer-XS and SpectFormer-B per-
form better than GFNet-XS and GFNet-B, respectively.

3. Implementation: Spectformer
The objective of the spectral layer is to capture the dif-

ferent frequency components of the image to comprehend
localized frequencies. This can be achieved using a spec-
tral gating network, that comprises a Fast Fourier Trans-
form (FFT) layer, followed by a weighted gating, followed
by an inverse FFT layer. The spectral layer converts physi-
cal space into spectral space using FFT. We use a learnable
weight parameter to determine the weight of each frequency
component so as to capture the lines and edges of an image
appropriately. The learnable weight parameter is specific
to each layer of SpectFormer and is learned using back-
propagation techniques. The spectral layer uses an inverse
Fast Fourier Transform (IFFT) to bring the spectral space
back to the physical space. Following the IFFT, the spec-
tral layer has layer normalization and Multi-Layer Percep-
tron (MLP) block for channel mixing, while token mixing
is done using the spectral gating technique.

SpectFormer block has been illustrated in Figure -2 of
the main paper, in the staged architecture. We introduce
an alpha factor in the SpectFormer block, which controls
the number of spectral layers and attention layers. If α=0,
SpectFormer comprises all attention layers, similar to DeIT-
s, while with an α value of 12, SpectFormer becomes simi-
lar to GFNet, with all spectral layers.

The above explanation is mainly for the vanilla Spect-



Figure 2. Comparison of ImageNet Top-1 Accuracy (%) vs GFLOPs of various models in Vanilla and Hierarchical architecture.

Figure 3. Comparison of ImageNet Top-1 Accuracy (%) vs Parameters (M) of various models in Vanilla and Hierarchical architec-
ture.

Former architecture. We have also come up with a staged
architecture, which comprises four stages, with each stage
having a varying number of SpecfFormer blocks. Stage 1
has 3 SpectFormer blocks, while Stage 2 has 4, Stage 3 has
6 and Stage 4 has 3 SpectFormer blocks, as shown in table
8. In the stage of SpectFormer-s, there are 2 spectral lay-
ers and 1 attention layer, while Stage 2 comprises 2 spec-
tral and 2 attention layers, to capture the local information.
Stages 3 and 4 comprise only attention layers, to capture
the semantic information. The details of SpectFormer-s ar-
chitecture were explained above, while SpectFormer-B and
SpectFormer-L are depicted in the table. We came up with
several variants of the spectral layer including using FNet,
FNO, GFNet and AFNO. We also provide a details Spect-
Former architecture of the vanilla transformer model, pre-
sented in table-4.

4. Results and Analysis

4.1. Comparison with Similar Architectures

We compared the vanilla architecture of SpectFormer to
the hierarchical architecture of SpectFormer in two parts
of the table-1. In the vanilla architecture, we devel-
oped tiny (SpectFormer-T), extra small (SpectFormer-XS),
small (SpectFormer-S), and base (SpectFormer-B) mod-
els that are similar in layer count and hidden dimensions
to GFNet [16], while the attention blocks are similar to
Deit [19]. Similarly, in the hierarchical architecture, we
developed small (SpectFormer-H-S), base (SpectFormer-H-
B), and large (SpectFormer-H-L) models using the Fourier
gating network. We also developed small and base models
using the Fourier and wavelet gating networks, as shown
in table-1. We observed that all the hierarchical models
(SpectFormer-H-S, SpectFormer-H-B, and SpectFormer-H-
L) performed better than the vanilla architecture and are



state-of-the-art, as shown in main paper.

4.2. Model Fine-tuning for High Resolution input

Our main experiments are conducted on ImageNet [3], a
popular benchmark for large-scale image classification. To
ensure a fair comparison with previous research [16,18,19],
we adopt the same training details for our SpectFormer
models. For the vanilla transformer architecture (Spect-
Former), we use the hyper-parameters recommended by the
GFNet implementation [16]. For the hierarchical architec-
ture (SpectFormer-H), we use the hyper-parameters recom-
mended by the WaveVit implementation [22]. We use the
hyper-parameters recommended by the GFNet implemen-
tation [16] and train our models for 30 epochs during fine-
tuning at higher resolutions. All models are trained on a
single machine equipped with 8 A100 GPUs. In our ex-
periments, we compared the fine-tuning performance of our
models with GFNet [16]. Our observations indicate that
our SpectFormer model outperforms GFNet’s base spec-
tral network. Specifically, SpectFormer-S(384) achieves a
performance of 83.0%, which is 1.2% higher than GFNet-
S(384), as shown in Table 7. Similarly, SpectFormer-
XS and SpectFormer-B perform better than GFNet-XS and
GFNet-B, respectively. In the results section, we present
the fine-tuned results for models trained on 224 x 224 and
fine-tuned on 384 x 384, as depicted in Table-7.
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