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Our supplementary material includes more detailed
explanations and experimental results on our proposed
method. We will discuss the following:

A. Preparation of our custom dataset “FlyingObjaverse”

B. Memory efficient training

C. Evaluation on priors beyond the visual hull

D. Evaluation on the high-resolution Spring dataset [6]

E. Robustness to noise and real-world data

(a) Reference Image (b) Ground Truth Disparity

(c) Disparity Limit bmin (d) Disparity Limit bmax

Figure 1. Sample from the FlyingObjaverse training dataset. No-
tice how the true disparity is close to the upper disparity limit ex-
cept for the basin in the bottom right, which cannot be recovered
from the visual hull.

A. Dataset Preparation
We render a custom dataset using Mitsuba 3 [4] and

meshes from Objaverse-XL [2], and place objects on a vir-

tual capture stage. Each scene contains a randomly trans-
formed arrangement of 1 − 10 objects, as shown in Fig. 1,
with an infrared camera stereo setup using active illumi-
nation with projected patterns similar to [3] and a total of
68 cameras for the masks, all captured at a resolution of
4608 × 5328. We render 2 stereo pairs for 500 scenes. For
testing, we follow the same rendering pipeline but select
meshes from different sources to avoid contamination of the
training dataset. To test performance on difficult lighting
effects, we curated scenes with objects that include chal-
lenging reflectance properties and fine details using high-
quality meshes from Poly Haven1 and built eight scenes,
each viewed from four different angles. As a second test
set, we used SMPL [5] human models with texture from
SMPLitex [1] to evaluate performance on human subjects.
We create 100 scenes by combining random poses from the
animations with random textures and render 2 stereo pairs
for each scene.

B. Memory Efficient Training
To update the weights of the recurrent network using

backpropagation, the recursive computation has to be un-
rolled, which can get prohibitively expensive in terms of
memory requirements. Instead, we group the unrolled
graph into blocks of m evaluations of the ConvGRU and as-
sume that no gradient flow exists between these blocks. We
can run the forward pass for m steps and at the end of the
block compute the gradients for both the ConvGRU weights
θGRU and the feature encoding weights θenc, because the it-
erative refinement outputs a new disparity estimate Di after
each step, which allows us to compute losses Li between
these intermediate predictions and the ground truth and ac-
cumulate them as Lblock. This in turn yields gradients ∂Lblock

∂θGRU

and ∂Lblock
∂θenc

that we accumulate into buffers GGRU and Genc
respectively. The computational graph that was recorded to
perform the backpropagation can now be discarded, as the
gradients in the next block do not depend on the previous

1https://polyhaven.com/

https://polyhaven.com/
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Figure 2. Stereo matching using sparse depth as prior.

operations, and the process is repeated until all blocks are
processed. Now the accumulated gradients can be used to
compute the parameter update based on gradient descent.
Crucially, the eager computation decouples the memory re-
quirements from the number of refinement steps, allowing
to increase the input resolution without sacrificing the qual-
ity of the refinement. Algorithm 1 shows the pseudocode
of the memory-efficient training procedure. This is what
we call the “Repeated” strategy since the gradient compu-
tation in line 13 always backpropagates through the whole
feature extraction network. Alternatively, in the “Accumu-
lated” strategy, we accumulate the gradient with respect to
the feature maps in line 13 and backpropagate this gradient
to the feature extraction network weights directly before the
update in line 19. Additionally, we shift the block bound-
aries in each training step of the optimization to prevent a
bias in the gradients.

C. Priors Beyond Visual Hull

To further demonstrate the flexibility of our approach,
we replaced the Visual Hull prior with a sparse depth map
prior, similar to the method proposed by Poggi et al. [7], in
an additional experiment. In their work, sparse depth mea-
surements are used as prior information for multi-view 3D
reconstruction. For our experiment, we simulated this prior
by generating a sparse depth map where 20% of pixels con-
tained depth information and applied additional Gaussian
noise with a standard deviation of 1 pixel. We pass the
known values d̂p into our method by setting the lower/upper
disparity limit as bp = (bmin

p , bmax
p ) = (d̂p− 0.5, d̂p +0.5).

The training of our pipeline followed a similar setup to the
experiments in Tab. 2 of the original paper. Fig. 2 shows the
qualitative results of the predicted disparity from samples of
the Poly Haven test set, alongside their estimated depth pri-

Algorithm 1 Memory Efficient Training

1: Initialize k ← n, Genc ← 0, GGRU ← 0,Lblock ← 0
2: for k = 1, ..., ⌊ nm⌋ do
3: // Compute forward pass inside block
4: for l = 0, ...,m− 1 do
5: // Update Disparity Estimate
6: Dkm+l ← Dkm+l−1 +∆km+l−1

7: // Accumulate loss
8: Lblock ← Lblock + L(Dkm+l, DGT )
9: end for

10: // Accumulate gradients
11: for l = 0, ...,m− 1 do
12: GGRU ← GGRU + ∂Lblock

∂θGRU

13: Genc ← Genc +
∂Lblock
∂θenc

14: end for
15: // Discard computational graph
16: Lblock ← 0
17: end for
18: θGRU ← update(θGRU,GGRU)
19: θenc ← update(θenc,Genc)

ors and the predicted baseline disparity for comparison. The
quantitative results are reported in Tab. 1, which demon-
strates the positive effect of incorporating the depth prior
on reducing the resulting error values.

Prior EPEall EPEnoc > 4pxall D1all

No Prior 1.48 0.83 4.6 0.93
Sparse Depth Map 0.84 0.61 1.8 0.24

Table 1. Comparison of our method on the Poly Haven test set,
without prior and with sparse noisy depth measurements as prior.



D. Experiments on Spring Dataset
We performed additional experiments on the publicly

available Spring dataset [6], which contains high-resolution
images. In these experiments, we trained our model for
100,000 iterations using a combined dataset composed of
50% Sceneflow and 50% Spring data.

We upsampled the Spring dataset to 4K resolution us-
ing bilinear interpolation and trained the model on cropped
image patches of size 256 × 1600 from the Spring dataset
and 288 × 640 from the Sceneflow dataset. During train-
ing, common stereo augmentation techniques were applied,
including scaling, flipping, y-jitter, color adjustments, and
occlusion inpainting, to improve robustness.

For evaluation, we processed the images at 4K reso-
lution, applying downsampling before submitting the re-
sults to the benchmark. The evaluation results are shown
in Tab. 2 and also available on the official benchmark web-
site2 where our method (“VHS”) ranked third at the time of
submission.

E. Robustness
To evaluate our method’s robustness, we performed ad-

ditional experiments on data with increasing noise levels.
The experimental setup follows a similar approach to that
of the experiments referenced in Tab. 2 of the original pa-
per, with the addition of Gaussian noise at varying levels
during the evaluation phase. Please see Fig. 3 for zoomed-
in examples of evaluation images with and without noise.
The influence of noise on the resulting error values is vi-
sualized in Fig. 4, for our method and in comparison for
IGEV-Stereo [8] evaluated on half resolution. Please note
that because IGEV-Stereo was evaluated at half resolution,
the results were also less influenced by the noise applied
at full resolution, due to the reduction of noise during the
downsampling process.

(a) Without Noise (b) σ = 0.06

Figure 3. Zoomed-in reference images: one without noise and
the other with added Gaussian noise at a standard deviation of
σ = 0.06.

To demonstrate the robustness of our method regarding
real-world data, we evaluated our method on data captured

2https://spring-benchmark.org/stereo
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Figure 4. Influence of the noise level (Gaussian noise with
standard deviation σ) in the evaluation data on the performance
(EPEall).

in a dome setup where we predicted the visual hull based
on 7 camera views. The resulting visual hull and the pre-
dicted disparities of our method compared to IGEV-Stereo
are shown in Fig. 5.
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1px 1px 1px 1px 1px 1px 1px 1px 1px 1px
Total Low-detail High-detail Matched Unmatched Not sky Sky S0-10 S10-40 S40+

13.726 13.368 35.317 11.646 55.022 12.618 30.565 12.106 13.249 18.223

Abs Abs Abs Abs Abs Abs Abs Abs Abs Abs
Total Low-detail High-detail Matched Unmatched Not sky Sky S0-10 S10-40 S40+

4.235 4.125 10.833 2.770 33.318 3.301 18.426 6.896 3.183 2.327

D1 D1 D1 D1 D1 D1 D1 D1 D1 D1
Total Low-detail High-detail Matched Unmatched Not sky Sky S0-10 S10-40 S40+

5.940 5.863 10.582 4.483 34.874 5.369 14.620 6.341 6.245 4.271

Table 2. Evaluation on the Spring Benchmark [6] measured over 1-pixel error (1px), absolute error (Abs), and disparity error (D1). The
metrics are reported across various categorized areas. For further details on the categorization, refer to [6].

(a) Reference Image (b) Visual Hull

(c) Predicted Disparity by IGEV-Stereoft [8] @ ½ (d) Predicted Disparity by VHSft (ours)

Figure 5. Qualitative results from a dome capture setup.


