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Supplementary Material

We report on the results obtained by FaVoR at various
iterations of the PnP-RANSAC scheme in in Appendix A.
In Appendix B, we discuss the tradeoff between the voxel
resolution and both the rendering capabilities and matching
performance of our system. We also report the similarity
responses for the Cambridge Landmarks [4] dataset, dis-
cussing the evidence of a lack of accuracy in the landmark
triangulation in Appendix C. Finally, we provide more de-
tails on our training losses and our landmark triangulation
method in Appendices D and E, respectively.

A. Extended Analysis of FaVoR Performance
and Error Computation

In this section, we report the pose estimation errors ob-
tained with different feature extractors at various iterations
of the iterative PnP-RANSAC scheme. Specifically, we re-
port the values for Alike-t, Alike-s, Alike-n, Alike-l [8] and
SuperPoint [2] with 64, 94, 128, 128, and 256 channels de-
scriptors, respectively.

Table 2 for the 7-Scenes [5] and Table 3 for the Cam-
brdige [4] datasets give the median pose estimate at the
1st, 2nd, and 3rd iterations of PnP-RANSAC, and the re-
spective average number of inlier points per image (used
to compute the pose estimate). The tables also report the
success rates of the PnP-RANSAC iterative scheme at the
various iterations, i.e., the ratio between the number of suc-
cessful estimates and the total number of queries. The data
shows a clear trend. Namely, the average number of in-
liers per image increases as the estimated camera pose con-
verges towards the true query image pose (i.e., as the pose
estimate error decreases). Furthermore, although there is
a difference in matching performance between the various
Alike networks (as reported in the Alike [8] manuscript),
our descriptor representation effectively ‘flattens’ these dif-
ferences, enabling robust matching despite view changes.
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Figure 1. PSNR and model size versus grid resolution. We re-
port the median peak signal-to-noise ratio (PSNR) and the average
checkpoint size for FaVoR Alike-l at different grid resolutions of the
voxel representation.

B. PSNR versus Voxel Resolution
The number of sub-voxels in each voxel representing

a landmark determines the grid resolution, R × R × R.
The grid resolution directly impacts the rendering quality
of the descriptor patches, increasing or decreasing the peak
signal-to-noise ratio (PSNR) values. The PSNR calculation
is given by

PSNR = 10 log10

(
MAX2

MSE

)
, (1)

where MAX = 2 is the maximum span of the descriptor
values, i.e, in the range (-1, 1), and MSE is the mean
squared error between the ground-truth patch and the ren-
dered patch. A grid resolution of R × R × R implies that
the grid contains R ·R ·R nodes, where each node (vertex)
encodes C channels (equal to the number of channels of the
descriptor). The chosen grid resolution impacts the overall
model size.

The plot in Figure 1 shows the median PSNR values at
different grid resolutions and the corresponding model size
on the chess scene of the 7-Scenes dataset [5]. The graph
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Figure 2. Similarity response scores versus grid resolution at
different view angles. We compare the different grid resolutions’
capacity to provide high score similarity score results at different
view angles. Higher scores lead to better matching meaning that
the rendered descriptors properly match the appearance of the ones
extracted by Alike-l [8].

shows that beyond a certain grid resolution, the improve-
ment in terms of PSNR is decreasing while, in contrast, the
model size grows exponentially. Therefore, as a tradeoff
between model size and good rendering capabilities of our
representation, we choose a grid resolution of 3 × 3 × 3
for our model. Also, this resolution choice is supported
by the median score values, obtained as described in the
manuscript in Section 4.4, reported in Figure 2. Figure 2
shows the median score values obtained in the chess scene
of the 7-Scenes dataset [5] with Alike-l [8], at different grid
resolutions. We note that grid resolutions greater than 1 ×
1 × 1 yield a similar score response; hence, we choose the
lower resolution to save on memory.

C. Score Response

In Figure 3 we show the response score map obtained by
convolving the dense descriptor map extracted using Alike-
l [8] with two descriptors rendered using FaVoR Alike-l. In
particular, we draw a red circle centred at the projection of
the triangulated landmarks on the camera plane. We add an-
other circle (in blue) that is centred at the coordinates of the
pixel with the strongest similarity response. Both the circles
should be concentric to provide an accurate pose estimate.
However, we notice that, most of the time, the circles do
not have the same centre for the samples obtained from the
Cambridge Landmarks dataset [4]. This misalignment may
be due to an imprecise triangulation of the landmarks, given
the depth uncertainty for the large scenes of the Cambridge
Landmarks dataset [4].

D. Training and Losses
To train our voxel representation of the descriptor

patches, we used two main losses, the squared L2 norm
loss and the cosine similarity loss. We begin by training
our model using the squared L2 norm and cosine similarity
losses to enforce that the direction and norm of the rendered
descriptors match the ground truth. The cosine similarity
loss is calculated as

Lcos

(
d̂uv
ij ,d

uv
ij

)
= 1−

d̂uv
ij · duv

ij

||d̂uv
ij || · ||duv

ij ||
, (2)

where d̂uv
ij is the rendered descriptor and duv

ij is the one
extracted by F from the patch Pij . For the density grid,
we use the cross-entropy loss, as in [6]. Also, to ensure a
smooth representation of the descriptor patch, for the last
500 epochs, we introduce a total variation (TV) regulariza-
tion term in the loss computation on the density and the de-
scriptor parameters as described in [6]. The complete loss
function for the voxel optimization is given by

Loss
(
d̂uv
ij ,d

uv
ij

)
=

||d̂uv
ij − duv

ij ||22 + Lcos

(
d̂uv
ij ,d

uv
ij

)
+ TV. (3)

During training, we choose a learning rate that depends on
the visibility of each sub-voxel. In particular, we follow the
same approach proposed by Sun et al. [6] where subvoxels
visible from fewer views have a lower learning rate. Choos-
ing the learning rate according to the visibility of the vox-
els allows training to focus more on the parts of the voxels
that represent portions that have been observed from several
views, and hence are more reliable than those with fewer
observations. Figure 4 shows a descriptor patch, the corre-
sponding ground truth extracted using Alike-l [8], both vi-
sualized using principal component analysis (PCA) to map
the descriptor space to RGB colors, and the L2 norm be-
tween the two patches in the descriptor space.

E. Landrmark Triangulation
Our method requires landmarks positions to locate and

train the associated voxels. Vision-based localization sys-
tems, such as visual-inertial odometry or visual simulta-
neous localization and mapping, already provide a land-
mark’s position in 3D space. Hence, we opt for a simple-
to-implement multi-view triangulation approach, since tri-
angulation is not the main focus of our work. Given a track
containing N poses Ti, with i = 1 . . . N , and hence N key-
points kij corresponding to the projection onto each camera
plane of the landmark ℓℓℓj , we wish to find the 3D coordinates
Wℓxj ,

W
ℓyj ,

Wℓzj in the world frame W of ℓℓℓj . An initial es-
timate of the coordinates ℓℓℓj can be determined by two-view
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Figure 3. Visualization of similarity response. We render a feature tracked during training using the Alike-l descriptor from an unseen
view on the 7-Scenes [5] and the Cambridge Landmarks [4] datasets. On the left, a) and d) display the ground truth positions of the
rendered feature points, obtained by projecting the triangulated landmarks on the camera plane, in red. At the same time, b), e) and c), f)
show the similarity response between the rendered features and the target image dense descriptor map. The yellow color indicates a strong
response, concentrated around the feature positions shown in a), demonstrating the effectiveness of our descriptor rendering approach. The
small circle in blue is the circle center at the highest score response, the red circle is centered at the project landmark position.
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Figure 4. Visualization of rendered vs ground truth descriptor
patch. We report the rendered descriptor patch a) and the cor-
responding ground-truth b) for Alike-l [8], compressed from 128
channels to 3 using PCA for visualization purposes. The patch in
c) represents the normalized difference between the rendered and
the ground truth, darker is better.

triangulation methods, such as the direct linear transform.
Following [1], we choose an anchor pose Ta from among
the poses in the track, and express ℓℓℓj in camera coordinates
for Ta. We define Ta ∈ SE(3), and in general any Ti, in
terms of a rotation matrix Ra ∈ SO(3) and a translation
vector ta ∈ R3:

Aℓxj
A
ℓyj

Aℓzj

 = RT
a


Wℓxj
W
ℓyj

Wℓzj

−RT
a ta. (4)

From Equation (4), we can write the landmark coordinates
in the world frame as a function of the anchor pose coordi-
nates:


Wℓxj
W
ℓyj

Wℓzj

 = Ra


Aℓxj
A
ℓyj

Aℓzj

+ ta. (5)

Hence, each time we need to determine the landmark coor-
dinates ℓℓℓj in camera frame Ti, associated with the pose Ti

in the track, we can write:


Tiℓxj
Tiℓyj
Tiℓzj

 = RT
i

Ra


Aℓxj
A
ℓyj

Aℓzj

+ ta

−RT
i ti (6)

= RT
i Ra


Aℓxj
A
ℓyj

Aℓzj

+RT
i (ta − ti) (7)

To improve the numerical stability of the optimization

process, we represent
[
Aℓxj ,

A
ℓyj ,

Aℓzj

]T
using the inverse



depth parametrization,

αj =

Aℓxj
Aℓzj

, βj =

A
ℓyj

Aℓzj
, ρj =

1
Aℓzj

(8)

We can then rewrite Equation (7) as
Tiℓxj
Tiℓyj
Tiℓzj

 =
1

ρj

RT
i Ra

αj

βj

1

+ ρj R
T
i (ta − ti)

 (9)

In turn, the camera measurement model is

ẑij =
1

Tiℓzj

[
Tiℓxj ,

Tiℓyj

]T
, (10)

where ẑij are the normalized image plane coordinates of
Tiℓj . The predicted measurement can be determined by
transforming kij into camera coordinates to obtain zij . This
involves back-projecting the keypoint coordinates kij from
the image plane to the camera frame, followed by normal-
ization, xkij

ykij

zkij

 = K−1

[
kij

1

]
(11)

zij =
1

zkij

[
xkij , ykij

]T
, (12)

where K is the intrinsic camera calibration matrix.
Finally, we find αj , βj , and ρj via Levenberg-Marquardt

optimization,

eij = zij − ẑij , (13)

uij =
√
eTijeij , (14)

ρ(u) =
1

2

c2u2

c2 + u2
, (15)

α∗
j , β

∗
j , ρ

∗
j = argmin

αj ,βj ,ρj

∑
i∈Sj

ρ(uij(eij(ẑij(ℓℓℓij(αj , βj , ρj)))),

(16)

where ρ(u) is a robust cost function [3] parameterized by
c, used to prevent outliers from negatively impacting the
estimate of the landmark coordinates.

F. Robustness to Pose Initialization Error
In Table 1 we report the 6-DoF median localization er-

rors for the 7-Scenes [5] dataset using two pose initializa-
tion methods: the first frame of the test sequence (Con-
stant) and DenseVLAD [7] (Retrieval). We perform the
evaluation using FaVoR coupled with Alike-l [8]. The
‘first frame’ initialization choice is equivalent to adding in-
creased noise to the starting guess, with increasing error

as the target pose moves far away from the initial pose
(at the first frame). However, this approach does ensure
reproducibility and provides a consistent baseline for fair
comparisons with future work, offering a reliable measure
of our method’s robustness. Our results indicate that af-
ter three iterations of the Render+PnP-RANSAC paradigm,
our method converges to a low localization error, even when
starting from less accurate poses than those provided by
DenseVLAD [7].
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Scene Method Prior Err. Iter 1 Iter 2 Iter 3

chess Retrieval 21.9, 12.13 0.8, 0.21 0.7, 0.19 0.7, 0.18
Constant 147.6, 29.94 1.0, 0.28 0.7, 0.19 0.7, 0.18

fire Retrieval 34.4, 13.2 0.8, 0.3 0.9, 0.4 0.8, 0.3
Constant 96.6, 35.6 1.2, 0.5 0.9, 0.4 0.8, 0.3

heads Retrieval 15.8, 15.0 0.7, 0.5 0.7, 0.4 0.7, 0.4
Constant 45.7, 37.8 28.7, 17.2 2.5, 1.5 0.5, 0.4

office Retrieval 28.6, 11.1 1.7, 0.4 1.7, 0.4 1.6, 0.4
Constant 113.8, 67.4 158.3, 57.4 10.2, 2.5 1.7, 0.4

pumpkin Retrieval 31.4, 10.8 1.4, 0.3 1.4, 0.3 1.3, 0.3
Constant 137.0, 49.7 4.1, 1.1 1.5, 0.3 1.2, 0.2

redkitchen Retrieval 29.4, 12.0 1.2, 0.3 1.2, 0.3 1.2, 0.2
Constant 192.4, 39.3 7.8, 1.8 1.8, 0.4 1.1, 0.2

stairs Retrieval 26.2, 15.8 3.8, 1.0 3.0, 0.8 2.7, 0.8
Constant 178.9, 16.3 231.4, 34.2 106.8, 16.2 4.7, 1.32

Table 1. Different pose initialization priors for 7-Scenes dataset [5]. We report the 6-DoF median pose errors (cm, deg) obtained with
FaVoR Alike-l for different pose initialization methods. The results show that FaVoR is robust to different initial poses as it converges to
small localization errors after iterating the Render+PnP-RANSAC scheme.



Scene Iteration
Feature

Extractor

Initial
pose error
(cm, deg)

Estimated
pose error
(cm, deg)

Avg. N. of
inliers

Success
rate (%)

chess 1st alike-l 21.92, 12.13 0.77, 0.21 66 100.00
2nd - 0.74, 0.19 74 100.00
3rd - 0.72, 0.18 74 100.00
1st alike-n 21.92, 12.13 0.73, 0.21 64 100.00
2nd - 0.68, 0.18 71 100.00
3rd - 0.64, 0.17 71 100.00
1st alike-s 21.92, 12.13 0.82, 0.26 117 100.00
2nd - 0.76, 0.22 122 100.00
3rd - 0.71, 0.20 122 100.00
1st alike-t 21.92, 12.13 1.01, 0.29 66 100.00
2nd - 0.94, 0.27 73 100.00
3rd - 0.89, 0.25 73 100.00
1st SuperPoint 0.22, 12.13 0.68, 0.19 88 100.00
2nd - 0.67, 0.17 99 100.00
3rd - 0.64, 0.16 99 100.00

fire 1st alike-l 34.37, 13.23 0.82, 0.34 73 100.00
2nd - 0.88, 0.36 72 100.00
3rd - 0.83, 0.34 72 99.85
1st alike-n 34.37, 13.23 0.86, 0.37 66 100.00
2nd - 0.93, 0.37 66 100.00
3rd - 0.89, 0.35 66 99.60
1st alike-s 34.37, 13.23 1.22, 0.47 172 100.00
2nd - 1.64, 0.60 162 100.00
3rd - 1.52, 0.56 163 99.70
1st alike-t 34.37, 13.23 1.17, 0.47 59 100.00
2nd - 1.37, 0.52 55 100.00
3rd - 1.30, 0.49 55 99.55
1st SuperPoint 34.37, 13.23 1.02, 0.39 67 100.00
2nd - 1.04, 0.38 67 100.00
3rd - 0.98, 0.36 67 98.65

heads 1st alike-l 15.77, 14.97 0.73, 0.46 46 100.00
2nd - 0.67, 0.41 53 100.00
3rd - 0.66, 0.40 53 94.50
1st alike-n 15.77, 14.97 1.08, 0.59 38 100.00
2nd - 0.97, 0.53 43 100.00
3rd - 0.96, 0.56 43 91.30
1st alike-s 15.77, 14.97 0.70, 0.43 81 100.00
2nd - 0.62, 0.37 92 100.00
3rd - 0.59, 0.36 92 99.20
1st alike-t 15.77, 14.97 0.89, 0.52 52 100.00
2nd - 0.81, 0.48 59 100.00
3rd - 0.76, 0.44 59 98.90
1st SuperPoint 15.77, 14.97 0.62, 0.39 76 100.00
2nd - 0.54, 0.34 87 100.00
3rd - 0.52, 0.32 88 99.20

Continue on next page



office 1st alike-l 28.58, 11.06 1.69, 0.43 36 100.00
2nd - 1.68, 0.41 39 100.00
3rd - 1.63, 0.39 40 99.25
1st alike-n 28.58, 11.06 1.77, 0.47 35 100.00
2nd - 1.74, 0.45 37 100.00
3rd - 1.69, 0.42 37 97.78
1st alike-s 28.58, 11.06 1.63, 0.45 69 100.00
2nd - 1.56, 0.41 72 100.00
3rd - 1.55, 0.40 72 99.98
1st alike-t 28.58, 11.06 2.57, 0.68 37 100.00
2nd - 2.26, 0.61 42 100.00
3rd - 2.21, 0.58 42 99.15
1st SuperPoint 28.58, 11.06 1.75, 0.43 65 100.00
2nd - 1.71, 0.41 72 100.00
3rd - 1.64, 0.37 72 99.75

pumpkin 1st alike-l 31.38, 10.81 1.39, 0.30 69 100.00
2nd - 1.39, 0.29 76 100.00
3rd - 1.31, 0.28 76 98.65
1st alike-n 31.38, 10.81 1.58, 0.36 70 100.00
2nd - 1.53, 0.34 76 100.00
3rd - 1.46, 0.31 76 93.45
1st alike-s 31.38, 10.81 1.38, 0.31 118 100.00
2nd - 1.38, 0.29 121 100.00
3rd - 1.34, 0.28 122 99.25
1st alike-t 31.38, 10.81 1.87, 0.43 81 100.00
2nd - 1.70, 0.39 90 100.00
3rd - 1.67, 0.37 91 96.40
1st SuperPoint 31.38, 10.81 1.50, 0.33 110 100.00
2nd - 1.51, 0.31 120 100.00
3rd - 1.45, 0.29 120 99.05

redkitchen 1st alike-l 29.38, 11.97 1.23, 0.30 45 100.00
2nd - 1.18, 0.25 54 100.00
3rd - 1.15, 0.24 54 98.08
1st alike-n 29.38, 11.97 1.37, 0.33 51 100.00
2nd - 1.34, 0.32 60 100.00
3rd - 1.21, 0.28 60 96.02
1st alike-s 29.38, 11.97 4.66, 1.09 57 100.00
2nd - 4.28, 1.00 67 100.00
3rd - 4.03, 0.94 68 77.42
1st alike-t 29.38, 11.97 1.44, 0.31 57 100.00
2nd - 1.39, 0.29 66 100.00
3rd - 1.33, 0.27 67 99.38
1st SuperPoint 0.29, 11.97 1.38, 0.30 79 100.00
2nd - 1.42, 0.27 93 100.00
3rd - 1.33, 0.24 93 98.74

Continue on next page



stairs 1st alike-l 26.19, 15.81 3.80, 1.03 11 100.00
2nd - 3.02, 0.81 12 100.00
3rd - 2.74, 0.82 12 97.90
1st alike-n 26.19, 15.81 7.19, 1.97 10 100.00
2nd - 6.28, 1.65 10 100.00
3rd - 5.96, 1.59 10 93.10
1st alike-s 26.19, 15.81 5.78, 1.63 70 100.00
2nd - 5.18, 1.49 68 100.00
3rd - 5.03, 1.51 68 100.00
1st alike-t 26.19, 15.81 5.30, 1.49 14 100.00
2nd - 4.38, 1.20 15 100.00
3rd - 4.03, 1.07 15 100.00
1st SuperPoint 26.19, 15.81 5.83, 1.69 27 100.00
2nd - 4.54, 1.21 31 100.00
3rd - 4.05, 1.07 31 99.90

Overall 1st alike-t 26.80, 12.85 2.03, 0.60 52 99.89
Average 2nd - 1.83, 0.54 57 99.24

3rd - 1.74, 0.50 57 99.05
1st alike-s 26.80, 12.85 2.31, 0.66 97 97.83
2nd - 2.20, 0.63 100 96.83
3rd - 2.11, 0.61 101 96.51
1st alike-n 26.80, 12.85 2.08, 0.62 47 97.18
2nd - 1.93, 0.55 51 96.28
3rd - 1.83, 0.52 51 95.89
1st alike-l 26.80, 12.85 1.49, 0.44 49 99.25
2nd - 1.37, 0.39 54 98.65
3rd - 1.29, 0.38 54 98.32
1st SuperPoint 26.80, 12.85 1.82, 0.53 73 99.81
2nd - 1.63, 0.44 81 99.49
3rd - 1.52, 0.40 81 99.33

Table 2. 6-DoF median localization errors on the 7-Scenes dataset [5] for the various features extractors used to train FaVoR.



Scene Iteration
Feature

Extractor

Initial
pose error
(cm, deg)

Estimated
pose error
(cm, deg)

Avg. N. of
inliers

Success
rate (%)

Shop 1st alike-l 136.31, 7.19 5.38, 0.27 208 100.00
2nd - 5.63, 0.22 231 100.00
3rd - 5.48, 0.25 231 100.00
1st alike-n 136.31, 7.19 5.27, 0.28 185 100.00
2nd - 5.43, 0.23 208 100.00
3rd - 5.09, 0.24 208 100.00
1st alike-s 136.31, 7.19 5.99, 0.24 225 100.00
2nd - 5.76, 0.25 250 100.00
3rd - 6.05, 0.25 250 100.00
1st alike-t 136.31, 7.19 5.65, 0.27 203 100.00
2nd - 5.89, 0.26 224 100.00
3rd - 5.25, 0.25 224 100.00
1st SuperPoint 136.31, 7.19 5.87, 0.29 204 100.00
2nd - 5.20, 0.26 225 100.00
3rd - 5.47, 0.26 224 100.00

College 1st alike-l 289.98, 5.96 18.19, 0.25 359 100.00
2nd - 17.04, 0.26 373 100.00
3rd - 15.25, 0.23 372 100.00
1st alike-n 289.98, 5.96 16.82, 0.28 315 100.00
2nd - 17.38, 0.28 327 100.00
3rd - 17.61, 0.26 327 100.00
1st alike-s 289.98, 5.96 16.64, 0.27 327 100.00
2nd - 15.74, 0.26 338 100.00
3rd - 15.67, 0.24 338 100.00
1st alike-t 289.98, 5.96 17.64, 0.28 326 100.00
2nd - 16.33, 0.26 336 100.00
3rd - 16.52, 0.25 337 100.00
1st superpoint 289.98, 5.96 17.88, 0.27 326 100.00
2nd - 18.15, 0.28 336 100.00
3rd - 17.52, 0.27 336 100.00

Great 1st alike-l 719.21, 9.47 32.46, 0.16 103 100.00
2nd - 29.48, 0.15 116 100.00
3rd - 27.40, 0.14 116 99.87
1st alike-n 719.21, 9.47 37.88, 0.21 82 100.00
2nd - 35.20, 0.18 91 100.00
3rd - 32.05, 0.18 91 99.21
1st alike-s 719.21, 9.47 36.18, 0.19 94 100.00
2nd - 34.27, 0.18 105 100.00
3rd - 31.78, 0.16 106 99.87
1st alike-t 719.21, 9.47 33.78, 0.19 101 100.00
2nd - 31.33, 0.15 114 100.00
3rd - 28.83, 0.14 114 100.00
1st SuperPoint 719.21, 9.47 34.69, 0.22 142 100.00
2nd - 30.71, 0.20 161 100.00
3rd - 29.09, 0.20 161 100.00

Continue on next page



Hospital 1st alike-l 405.22, 7.58 22.18, 0.44 155 100.00
2nd - 21.37, 0.40 160 100.00
3rd - 19.37, 0.36 160 100.00
1st alike-n 405.22, 7.58 27.28, 0.47 128 100.00
2nd - 22.68, 0.44 132 100.00
3rd - 21.17, 0.40 131 100.00
1st alike-s 405.22, 7.58 25.13, 0.44 132 100.00
2nd - 25.71, 0.47 136 100.00
3rd - 20.75, 0.37 136 100.00
1st alike-t 405.22, 7.58 26.30, 0.51 140 100.00
2nd - 25.10, 0.48 145 100.00
3rd - 20.14, 0.41 145 100.00
1st SuperPoint 405.22, 7.58 31.53, 0.56 143 100.00
2nd - 31.05, 0.55 148 100.00
3rd - 27.46, 0.54 148 100.00

Church 1st alike-l 287.61, 9.36 11.58, 0.38 201 100.00
2nd - 10.31, 0.31 228 100.00
3rd - 10.35, 0.30 228 100.00
1st alike-n 287.61, 9.36 12.46, 0.43 181 100.00
2nd - 11.53, 0.35 206 100.00
3rd - 10.90, 0.33 206 100.00
1st alike-s 287.61, 9.36 12.67, 0.42 180 100.00
2nd - 12.01, 0.36 203 100.00
3rd - 11.40, 0.35 204 99.81
1st alike-t 287.61, 9.36 12.18, 0.40 170 100.00
2nd - 11.66, 0.35 192 100.00
3rd - 11.21, 0.36 192 100.00
1st SuperPoint 287.61, 9.36 14.15, 0.49 188 100.00
2nd - 12.72, 0.42 220 100.00
3rd - 11.43, 0.38 220 99.81

Overall 1st alike-t 367.67, 7.91 19.11, 0.33 188 100.00
Average 2nd - 18.06, 0.30 202 100.00

3rd - 16.39, 0.28 202 100.00
1st alike-s 367.67, 7.91 19.32, 0.31 192 100.00
2nd - 18.70, 0.30 206 100.00
3rd - 17.13, 0.27 207 99.94
1st alike-n 367.67, 7.91 19.94, 0.34 178 100.00
2nd - 18.44, 0.30 193 99.92
3rd - 17.36, 0.28 193 99.84
1st alike-l 367.67, 7.91 17.96, 0.30 205 100.00
2nd - 16.77, 0.27 222 100.00
3rd - 15.57, 0.26 221 99.97
1st SuperPoint 367.67, 7.91 20.82, 0.37 201 100.00
2nd - 19.57, 0.34 218 99.96
3rd - 18.19, 0.33 218 99.96

Table 3. 6-DoF median localization errors on the Cambridge dataset [4] for the various features extractors used to train FaVoR.
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