Supplementary: Multi-Scale Grouped Prototypes for Interpretable Semantic Segmentation

6. Details on experimental set-up

In this section, we provide the details of the experimental
set-up briefly described in Section 4.1 to support reproduc-
ing the results.

Firstly, across all training stages, the prototypes are
the same size as the output feature maps of the non-
concatenated ASPP in DeepLabv2 [9]: D = 64. For both
multi-scale prototype training and the grouping mechanism
we leverage augmentation techniques, such as random hor-
izontal flipping, cropping, and scaling images by a factor
between [0.5, 1.5] for Cityscapes [14] and Pascal VOC [21],
and [0.5, 2] for ADE20K [100]. The batch size used in all
the training stages is 10 and we select the Adam optimizer
with a weight decay of 5e=%, 3; = 0.9, and ; = 0.999
for our experiments. Moreover, as the batch size in our ex-
periments is limited, we freeze the batch normalization pa-
rameters of the ResNet-101 backbone due to its impact on
performance.

For the multi-scale prototype training stage, we set the
weights of the loss terms to Ap; = le=* and A\; = 0.25
following ProtoSeg on both Cityscapes and Pascal VOC,
and Az, = le~® for ADE20K due to the large number of
classes. For the datasets: Cityscapes and Pascal VOC, we
run first the warm-up step for 3000 batch iterations with
a fixed learning rate of 2.5¢=%. The joint training step
is run for 30000 batch iterations with an initial learning
rate of 2.5e~® for ResNet-101 and 2.5e~* for the proto-
type and ASPP layers. For this step, we leverage a learning
rate scheduler following the polynomial learning rate pol-
icy with power = 0.9. Lastly, the fine-tuning step is done
over 2000 batch iterations extended to 6000 for Pascal with
a fixed learning rate of 1le~5. For ADE20K we leverage
the same learning rate and learning rate scheduler as for the
other two datasets but we double the number of batch itera-
tions compared to Cityscapes on all steps: 6000 batches for
warm-up, 60000 batches for joint training, and 4000 batches
for fine-tuning.

The training of ProtoSeg on ADE20K follows the same
experimental set-up as the multi-scale prototype training
stage described above and as mentioned in Section 4.1: 12
prototypes per class were used to match ScaleProtoSeg.

During the training of the grouping mechanism, we set
the weights of the loss terms to A,; = le™2 for Cityscapes
and Pascal VOC, and A;; = le—* for ADE20K. Moreover,
we set Aepr = 0.05 for Cityscapes and Pascal VOC, and
Aent = 0.25 for ADE20K. We run the warm-up stage to
train the group projections for 2000 batch iterations with a
fixed learning rate of 2.5¢~* for all datasets. Then, we run
the fine-tuning stage for 30000 batches with a learning rate
of 2.5¢~* and the same optimizer and scheduling policy as

in the prototype joint training phase for all datasets.

We evaluate ScaleProtoSeg on Pascal VOC for which we
set the training image resolution to 321 x 321 and the testing
one to 513 x 513. Moreover, we use multi-scale inputs [9]
with scales {0.5,0.75,1} during training. We also evalu-
ate ScaleProtoSeg on Cityscapes, for this dataset, we do not
use MSC input training, we set the training resolution to
513 x 513 and the testing one to 1024 x 2048. Lastly, we
evaluate ScaleProtoSeg and ProtoSeg on ADE20K with no
MSC input, a training resolution of 512 x 512, and at test
time we resize the smallest size of the image to the train-
ing resolution and keep the aspect ratio. Lastly, the perfor-
mance of DeepLabv2 on ADE20K was extracted from [36].

The interpretability evaluation of our method is done
on the parts annotated validation sets from Cityscapes and
PASCAL-Context [16, 58]. In particular, to align to the
classes and images covered during training for Pascal, we
tested on the overlap images between PASCAL VOC and
PASCAL-Context and so used the semantic annotations
from PASCAL VOC and the part annotations from [16, 58]
for the 16 classes covered. This represents 925 validation
images for Pascal. Moreover, the stability and consistency
metrics require part keypoints in their formulation, for this
purpose we leverage the standard algorithm from opencv
with an 8-connectivity relation between non-zero elements
to compute the centroids of every connected component in
the part annotations, similar to Section 4.2. The prototype
activations are computed using the images in their native
size for both datasets and interpolated to their correspond-
ing part annotation size. We leverage multiple binarization
thresholds on the prototype activations as mentioned in Sec-
tion 4.2 to improve the robustness of those metrics in terms
of variance across runs and to avoid a strong dependency
on a fixed hyperparameter contrary to the window size used

in [37].

7. Transferability of ScaleProtoSeg

To demonstrate the transferability of the proposed
ScaleProtoSeg method beyond the domain of natural im-
ages, we run experiments on a medical dataset. In partic-
ular, we use the EM segmentation challenge dataset from
ISBI 2012 [4], containing 30 images of size 512 x 512
with 2 classes that are randomly split 2 times in 20 train-
ing and 10 validation images, similar to the experiment in
ProtoSeg [70]. The architecture used as the backbone for
this experiment is the original U-Net [67]. The applica-
bility of ScaleProtoSeg to another segmentation backbone
is straightforward as it simply requires stacking the ASPP
at the network output before the classification layer, allow-
ing the extraction of multi-scale feature maps. The proto-

type layer contains 10 and 12 prototypes per class for Pro-
toSeg and ScaleProtoSeg respectively, so 3 prototypes per
scale and class for ScaleProtoSeg and similarly 3 groups
per class. We run 3 experiments per method in the same
set-up as in ProtoSeg with pruning and grouping for each
method respectively. For the prototype training stage, we
skip the warm-up step and run the joint training and fine-
tuning step for 10000 batches iterations each with a batch
size of 2. The learning rate for the joint step is fixed at le =%
and we use the same learning scheduler as in Section 6. The
learning rate for the fine-tuning step is constant and fixed at
le~>. The weights of the loss terms for both methods dur-
ing the prototype training stage are set to Ay, = le™* and
Ay = 0.25. In the grouping stage for ScaleProtoSeg, we
also skip the warm-up step and run the joint training step
for 10000 batch iterations with a learning of 5e¢=5 follow-
ing the same scheduler as in Section 6. The weights of the
loss terms during the grouping stage are set to Ap,; = le™*
and A¢pr = 0.25. The optimizer and augmentation pipeline
used across all stages and methods is the same as in Sec-
tion 6. We report the mloU in Table 5. Results show that
ScaleProtoSeg can transfer to another backbone and image
modality. Indeed, not only ScaleProtoSeg outperforms Pro-
toSeg in datasets with complex scenarios (CityScapes and
ADE20K), but it also yields marginally better performance
in the considered medical dataset despite the fact that the
images do not present multi-scale features (similarly to the
PASCAL VOC benchmark).

Method EM Split1 | EM Split 2
ProtoSeg (U-Net + ASPP) 77.63 £0.29 | 78.92 +0.19
ScaleProtoSeg (U-Net + ASPP) | 77.97 £0.16 | 79.29 +0.17

Table 5. IoU performance of ScaleProtoSeg compared against
ProtoSeg. Results demonstrate the effective transferability of
ScaleProtoSeg to another segmentation architecture (U-Net) and
the medical domain (ISBI 2012 dataset) [4].

8. Extension to large dataset

In order to test our method in a use case close to real-
world applications we extend our evaluation to a large
benchmark: COCO-Stuff [7], containing 182 classes among
11 are not present in the dataset with 118k training and 5k
validation samples. We leverage a similar setup to ADE20K
for the model hyperparameters, except that in the multi-
scale prototype training stage, we iterate for a total of 110k
iterations: 6000 warm-up steps, 100k joint steps, and 4000
finetuning steps. Moreover, the iterations are done directly
on a batch of size 10. We also use multi-scale inputs with
scales {0.5,0.75, 1} and a training resolution of 321 x 321,
while testing at the native resolution. The objective is to
align to the set-up for the DeepLabv2 baseline provided
at this repository: github.com/kazuto1011/deeplab-pytorch.

Method COCO-Stuff
mloU

DeepLabv2 39.7

ScaleProtoSeg | 34.50 +0.19

Table 6. ScaleProtoSeg mloU performance on COCO-Stuff vali-
dation set. We report the results over 3 runs for our method.

The results for our method: ScaleProtoSeg are presented in
Table 6, and showcase that our method despite lower per-
formance stays competitive with DeepLabv2 on a larger
dataset while providing interpretability. Moreover, Pro-
toSeg trained in a similar setup has a performance of
32.97 mloU without pruning for one run, so ScaleProto-
Seg slightly outperforms it.

9. Sparsity Regularization

In the grouping mechanism, it is also possible to con-
trol for the sparsity-performance trade-off via the thresh-
olding of the grouping weights in the matrices w . defined
in Section 3.2. This is demonstrated in Table 7. The best
results are obtained for threshold o« = 0.05 on all datasets.
At this threshold, the groups are sparse with an average of
3.70, 3.39, and 4.08 active prototypes per group for Pas-
cal, Cityscapes, and ADE20K, which leads to better inter-
pretability performance for the sparsity metric compared to
ProtoSeg. Moreover, we analyze the effect of the entropy
regularization on the grouping mechanism as shown in Ta-
ble 8. This regularization enables our method to use fewer
prototypes in total and per group while providing similar
performance, with up to 20 total prototypes dropped and
2.5 prototypes per group less for Cityscapes.

Dataset Threshold | Prototypes | Group Avg | mloU
a=0. 133 4.00 72.11
Pascal a=0.05 131 3.70 72.26
a=0.1 126 3.21 72.12
a=0. 114 3.68 69.20
Cityscapes | a = 0.05 111 3.39 69.22
a=0.1 109 3.10 69.03
a=0. 1168 453 34.03
ADE20K a = 0.05 1132 4.08 34.32
a=0.1 1067 348 34.16

Table 7. Ablation study of the effect of thresholding on the group-
ing mechanism with Aeyy = 0.05 on our ScaleProtoSeg best per-
forming run.

10. Group Overlap

In this section, we extend the analysis on the effect of
the entropy loss regularization on the grouping mechanism
presented above, as entropy regularization also impacts the

https://github.com/kazuto1011/deeplab-pytorch

Dataset Regularization | Prototypes | Group Avg | mloU
Pascal Aent =0 146 5.59 72.22
Aent = 0.05 131 3.70 72.26

Cityscapes Aent =0 132 5.79 69.22
Aent = 0.05 111 3.39 69.22

Aent = 1405 6.06 33.40

ADE20K Aent = 0.25 1132 4.08 34.32

Table 8. Ablation study on the effect of the entropy regularization
on the grouping mechanism with o = 0.05 on our ScaleProtoSeg
best performing run.

overlap between group activations and supports identifying
prototypical parts.

Dataset Regularization | mIoU Groups
Pascal Aent =0 47.45
Aent = 0.05 28.29
. Aent =0 61.65
Cityseapes |y "~ 0.05 43.48
Aent =0 50.25
ADEOK 1, =025 42.74

Table 9. Analysis of the effect of the entropy regularization on
the group activations overlap measured via mloU with a threshold
a = 0.05 on our ScaleProtoSeg best performing run.

We observe that besides reducing the number of pro-
totypes used in the groups as shown in Table 8, the en-
tropy loss also encourages diversity in the activations of the
groups assigned to the same class as shown in Figure 6 for
Cityscapes. In Table 9, we present a quantitative analysis of
this phenomenon. Firstly, on the validation sets of Pascal,
Cityscapes, and ADE20K, we binarize all the group activa-
tions using the 95" percentile. Then we compute on those
validation sets the mloU between the binarized group ac-
tivation maps assigned to the same class, as a measure of
overlap in the group activations. We observe that the en-
tropy regularization on all three datasets decreases the over-
lap between groups of up to 19% for Pascal. A low overlap
between group activations enables the model to focus on
different prototypical parts of the object and avoid groups
all focusing on the whole object. Those results can be ex-
plained by the increased sparsity of the grouping functions,
which ultimately leads to more variation in prototype as-
signment between the groups.

11. Multi-scale prototype analysis

In the proposed ScaleProtoSeg method, each set of pro-
totypes assigned to a scale s € S corresponds to a specific
field of view (FOV) from the ASPP layer in [9]. We hy-
pothesize that certain class-specific prototypes form pairs or
groups of quasi-equivariant prototype activations between
scales. Our definition of quasi-equivariance across scales

(a) Group activations without
entropy regularization

(b) Group activations with entropy
regularization

Figure 6. Example of group activations with or without entropy
regularization for the class truck on Cityscapes.

is as follows. For a class ¢ € C, let us consider Vx €
RHXWx3 and its downscaled version x' € R= X% %3 (the
factor of 2 here matched the atrous rate increase from scale
1 to 2). Let us select the candidate pair of quasi-equivariant
prototypes pi1; € P . and pa; € P>, and compute
their respective activation maps A; ; from all z; € f1(x’)
With gproto (21, P1,i), and A ; from all zy € fo(x) with
Gproto (22, P2,j). The pair of prototypes is considered as
quasi-equivariant if:

fupsample(Al,i) ~ A2,j (10)

with fipsample the upsampling function for A ; to the orig-
inal size of Ay ;. The similarity measure between activa-
tions is defined below.

In order to identify the sets of prototypes with quasi-
equivariant activations for a specific class ¢ € C we first
specify the increasing atrous rates ratio of each ASPP
output feature maps with respect to the smallest one:
{r151,m1-2,71-3,71-4} in the case of S = 4. The ob-
jective is to compute for all training images x € RH*Wx3,
downscaled versions of the original image x;_,¢ such that
X1 s € R7ims X752 3 Then, for all distinct pairs of fea-
ture map scales such that (s, s’) € S? and s < ', we select
X1 and X, ¢ to compute fq(x1) and fo (x1-5). The
objective is to align, through the downscaling of the image,
the semantic parts covered by the FOV of each ASPP scale

s and s’. Then we compare all pairs of prototypes from the
scales s and s’. For a specific pair (ps,;, ps/,;) We compute
from the feature maps fs(x1_¢) and fg (x1_), the acti-
vation maps fupsample(As,i) and A ;, as described above.
The similarity measure is then computed as follows, as we
want to focus on the most activated parts for the objects as-
signed to ¢ we threshold the activation maps to a percentile
ptn € {0.6,0.7} only considering the positions where the
ground truth label y, = c. Then we derive the mloU be-
tween the binarized activation maps across all the train-
ing set images, defining our similarity measure. Pairs of
quasi-equivariant prototypes are identified when the mloU
is above a fixed threshold IoU;;, = 0.5 on the training set.
Lastly, pairs of quasi-equivariant prototypes are merged into
groups if they overlap across scales.

In Figure 7, we present the results of the equivariance
analysis on three datasets. Interestingly, we observe that
for both Cityscapes and Pascal VOC there are more than
50% of classes with quasi-equivariant groups for py, = 0.6,
demonstrating that the network learns through its multi-
scale prototypes similar activations for similar prototypi-
cal parts in the image at different scales. For ADE20K,
we observe that only 12% of classes have quasi-equivariant
groups. We argue that since ADE20K is characterized by
many complex scenes, as we constrain the representation
space to the learning of only 12 prototypes across scales,
all the learned prototypes represent scale-specific contex-
tual information. We suppose that if we were to increase
the number of prototypes per scale, redundant information
would start to appear across scales and more prototypes
would be activated on similar prototypical parts at differ-
ent scales, leading to an increase in the number of classes
with quasi-equivariant groups. In Figure 8, 9, and 10 we
show examples of pair of quasi-equivariant prototypes for
DPth = 0.6.

12. Sparsity and Computation Overhead

Dataset Method Avg Weight | Parameters It/s
Pascal ProtoSeg 0.527 £0.004 | 12.1K£0.3 | 20.7 +£0.2
ScaleProtoSeg | 0.063 +£0.001 | 9.1K £0.0 15.6 £0.5
Cityscapes ProtoSeg 0.523 £0.001 | 9.9K +0.2 | 52.5+0.2
ScaleProtoSeg | 0.071 £0.001 | 7.6K £0.1 5.1+0.0
ADE20K ProtoSeg 0.503 £0.001 | 238.2K £2.2 | 51.9 +2.0
ScaleProtoSeg | 0.437 £0.001 | 1354K +0.3 | 14.5 £0.8

Table 10. Analysis of the sparsity of the final classification layer
via the average absolute weight in wp,,,, for ProtoSeg and wp,,,
for ScaleProtoSeg, and the computation overhead with respect to
DeepLabv?2 induced by the interpretable methods.

In the sparse grouping mechanism proposed in our
method, we also enforce a strong sparsity regularization on
the last layer hyroro Which enables the model to constrain the
negative effect of the prototypes not assigned to a class in

mmm Percentile 0.6
0.8 . Percentile 0.7

a
a
5
20.6
o
S
204
k] .
14
0.2
0.0 | I

Cityscapes ADE20K Pascal VOC

(a) Ratio of quasi-equivariant groups identified.

= Percentile 0.6
0.8 . Percentile 0.7

»
8

g

S

s

<3

&

504

=

®

o2

0.0 | I

Cityscapes ADE20K Pascal VOC

(b) Ratio of prototypes in the quasi-equivariant
groups.

1.0

mmm Percentile 0.6
0.g| ™ Percentile 0.7
00 . ,

Cityscapes ADE20K Pascal VOC

o
o

o
=

Ratio of Classes

o
N

(c) Ratio of classes with quasi-equivariant
groups.

Figure 7. Analysis of the presence of quasi-equivariant groups
in all three datasets for p;, € {0.6,0.7} on our best performing
ScaleProtoSeg run. In (a), the number of quasi-equivariant groups
is compared to the total number of groups defined in the sparse
grouping mechanism.

the final decision process, as shown in Section 3.3. We see
in Table 10 that our method presents a small average abso-
lute weight on wy,,, . and as a consequence a strong sparsity
for both Pascal VOC and Cityscapes, especially compared
to ProtoSeg. Moreover, despite the increased complexity of
ADE20K, our method presents still a smaller average abso-
lute weight than ProtoSeg.

We also analyze in Table 10 the number of extra-
parameters necessary in our method and ProtoSeg com-
pared to the black-box baseline: DeepLabv2, after pruning
at inference. We observe that, due to the limited number
of active prototypes and the group projection, ScaleProto-
Seg requires less computational overhead, especially for a
large number of classes like in ADE20K, where our method
uses 43% less extra parameters. Those results are com-
puted on 3 local runs per method, and it is important to
highlight that ProtoSeg on Pascal despite similar perfor-
mance presents ~ 25 more prototypes after pruning com-
pared to [70], which also directly impacts the sparsity met-

(a) Prototype activations on a pair of quasi-equivariant prototypes for an input image downscaled by a ratio of 2 and 1 respectively.

(b) Binarized prototype activations on a pair of quasi-equivariant prototypes for an input image downscaled by a ratio of 2 and 1 respectively.

Figure 8. Example of quasi-equivariant pair of prototypes for the class car on Cityscapes. Prototype on the left is from Scale I and on the
right is from Scale 2.

(a) Prototype activations on a pair of quasi-equivariant prototypes for an input image downscaled by a ratio of 3 and 1 respectively.

(b) Binarized prototype activations on a pair of quasi-equivariant prototypes for an input image downscaled by a ratio of 3 and 1 respectively.

Figure 9. Example of quasi-equivariant pair of prototypes for the class rider on Cityscapes. Prototype on the left is from Scale 1 and on
the right is from Scale 3.

(a) Prototype activations on a pair of quasi-equivariant prototypes for an input image downscaled by a ratio of 3 and 1 respectively.

(b) Binarized prototype activations on a pair of quasi-equivariant prototypes for an input image downscaled by a ratio of 3 and 1 respectively.

Figure 10. Example of quasi-equivariant pair of prototypes for the class person on Cityscapes. Prototype on the left is from Scale I and on
the right is from Scale 3.

ric in Table 6.

It is also important to consider the computational over-
head during training. First, we showed that the added
number of parameters compared to DeepLabv2 is minimal.
However, some overhead complexity arises in ProtoSeg and
ScaleProto from the KLD regularisation loss and the proto-
type projection. In particular, the impact on training time of
the KLD loss is much more important in the case of Proto-
Seg at a high number of prototypes compared to ScalePro-
toSeg as in our method we parallelize the loss across scales.
Moreover, at training time the fine-tuning of the classifica-
tion layer and groups after the prototype projection of our
method adds only a limited overhead to the training as we
tune only a handful of parameters for a few epochs.

Finally as shown in Table 10 at inference our method is
slower than ProtoSeg due to the grouping process but we
believe that is likely due to a lack of parallelization in our
code.

13. Group Representations and Assignments

In this section, we aim to present more representative ex-
amples of our results in terms of interpretability. First, we
show in Figure 11 an example of group activations for the
class person in Cityscapes, where groups 1 and 2 identify
the head and feet respectively of a person, while group 3
identifies the main body of the persons. Interestingly, sim-
ilarly to the class car in the main paper, group 2 is mainly
activated by a prototype at scale 1 and as a consequence
seems to be more present on person further away in the im-
age as seen in (b). This level of understanding of the scale
effect on the model representation is a key contribution of
our method compared to ProtoSeg in terms of interpretabil-
ity.

Moreover, we show in Figure 12 and 13 more compara-
tive results between our method and ProtoSeg, where again
the limitations on the number of groups simplify the anal-
ysis of the decision process for our method as seen for the
class bicycle and chair. In the analysis of the class rider and
aeroplane, we can observe another advantage of our method
as ProtoSeg presents a failure case of prototype pruning
where only one prototype specific to the class rider or aero-
plane is left after post-processing.

14. Nearest Image Patches to Prototypes

For the learned prototypes to be interpretable to the
users, the semantic parts that they represent should be simi-
lar across images. To analyze whether our method is consis-
tent across images, we extend the consistency metric from
Section 4.2 with visualizations of the nearest images in the
validation set from a few prototypes in Cityscapes and Pas-
cal VOC. Those visualizations are shown in Figures [14
- 19], and showcase strong semantic correspondences be-

tween the prototypes and their closest patches.

15. Nearest Prototypes to Image Patches

To further analyze the semantic correspondences in the
prototype layer of the model, we study the nearest proto-
types to all image patches during the decision process. This
is also directly linked to the consistency metric. To this pur-
pose, in Figure [20 - 25] we visualize the three closest pro-
totypes for random patches in an image. The visualizations
again showcase good semantic matches for our proposed
method.

16. Semantic meaning of groups

We provide a clearer understanding of the grouping
mechanism by showing, in Figure 26, the activations of pro-
totypes assigned to the same group for a given class. It can
be observed that prototypes are grouped into semantically
meaningful groups.

17. Failure case analysis

In this section, we analyze an image from PASCAL VOC
where the IoU for a given class: cow, falls below a threshold
set to €7,y = 0.2, to describe how our method can be lever-
aged for interpretability analysis. For this failure, we ob-
serve in Figure 27 that the veal in the image is classified as
a sheep. Indeed, we observe in Figure 28 that for the group
activations of the class cow, only the first group is slightly
activated essentially on the second cow behind, while the 3
sheep groups activate both the top and bottom of the animal.
We observe that all the main prototypes for the cow groups
in Figure [30 - 32] either activate a part not visible on the
veal or seem to rather focus on the “texture” of the animal
which can be misleading in this case. For the class sheep,
we observed in Figure [33 - 35] that the two most activated
groups: 1 and 3, are driven by the same prototype which is
a Scale 1 prototype focusing on texture. This seems rea-
sonable knowing that the wool is a characteristic specific to
this class and that a similar aspect can be seen for the veal.
To avoid learning misleading “texture” prototypes such as
the one mentioned previously, the method presented in [6]
can be leveraged to enforce forgetting such prototypes via
human expert feedback.

Scale 1 Scale 2 Scale 3 Scale 4

Group 1 Group 2 ‘ Group 3
——

Figure 11. ScaleProtoSeg provides an interpretation of the resulting segmentation through groups of prototypes. For an example of the
class person on Cityscapes, 2 prototypes per scale (whose activations are displayed at the top of the figure) are used by the model across
the 3 learned groups shown at the bottom right. For this class, groups can correspond to the feet, the main body or the head of the person.

Interpretation
with groups

ScaleProtoSeg ProtoSeg [70] Original
groups prototypes

output

ScaleProtoSeg ProtoSeg [70]
output

Figure 12. Model prototype, group assignments and prediction for the class bicycle, rider, and chair on Cityscapes, and ADE20K.

ScaleProtoSeg ProtoSeg [70] Original
groups prototypes

output

ScaleProtoSeg ProtoSeg [70]
output

Figure 13. Model prototype, group assignments and prediction for the class dinning table, aeroplane, and animal on Pascal, and ADE20K.

oWy,

\
“u.w,‘u‘__l:"; 1

1

enal

Prototypes

Top 1 Patch

Top 2 Patch

Top 3 Patch

Figure 14. The first row represents a prototype for the class person in Cityscapes marked by a red box and the activation of the prototype
on its image. The second to fourth rows show the closest patches to the prototype and its activation on the images containing the patches.

Prototypes

Top 1 Patch

Top 2 Patch

Top 3 Patch

Figure 15. The first row represents a prototype for the class car in Cityscapes marked by a red box and the activation of the prototype on
its image. The second to fourth rows show the closest patches to the prototype and its activation on the images containing the patches.

Prototypes

=
O
2
<
[aW
—
)
H
Moy "‘:Hu
LEEE TR
=
O
2
<
A
N
5]
[_4
apRens o) |
| I+
=
O
N—
<
[aW
on
)
=

Figure 16. The first row represents a prototype for the class bicycle in Cityscapes marked by a red box and the activation of the prototype
on its image. The second to fourth rows show the closest patches to the prototype and its activation on the images containing the patches.

Prototypes

Top 1 Patch

Top 2 Patch

Top 3 Patch

Figure 17. The first row represents a prototype for the class bird in PASCAL VOC marked by a red box and the activation of the prototype
on its image. The second to fourth rows show the closest patches to the prototype and its activation on the images containing the patches.

Prototypes

Top 1 Patch

Top 2 Patch

Top 3 Patch

Figure 18. The first row represents a prototype for the class cat in PASCAL VOC marked by a red box and the activation of the prototype
on its image. The second to fourth rows show the closest patches to the prototype and its activation on the images containing the patches.

Prototypes

Top 1 Patch

Top 2 Patch

Top 3 Patch

Figure 19. The first row represents a prototype for the class dog in PASCAL VOC marked by a red box and the activation of the prototype
on its image. The second to fourth rows show the closest patches to the prototype and its activation on the images containing the patches.

Image Patches

Top 1 Prototype

Top 2 Prototype

Top 3 Prototype

Figure 20. The first row represents a validation image from Cityscapes with three randomly selected patches red, green, blue. The second

to fourth rows show the closest prototypes to the red patch via its activation on itself and on the image containing the red patch. In the
second column, the bounding boxes correspond to the similarly activated area centered around the random patch.

Image Patches

Top 2 Prototype Top 1 Prototype

Top 3 Prototype

Figure 21. The first row represents a validation image from Cityscapes with three randomly selected patches red, green, blue. The second
to fourth rows show the closest prototypes to the green patch via its activation on itself and on the image containing the green patch. In the
second column, the bounding boxes correspond to the similarly activated area centered around the random patch.

Image Patches

Top 2 Prototype Top 1 Prototype

Top 3 Prototype

Figure 22. The first row represents a validation image from Cityscapes with three randomly selected patches red, green, blue. The second
to fourth rows show the closest prototypes to the green patch via its activation on itself and on the image containing the green patch. In the
second column, the bounding boxes correspond to the similarly activated area centered around the random patch.

Image Patches

Top 2 Prototype Top 1 Prototype

Top 3 Prototype

Figure 23. The first row represents a validation image from PASCAL VOC with three randomly selected patches red, green, blue. The
second to fourth rows show the closest prototypes to the blue patch via its activation on itself and on the image containing the blue patch.
In the second column, the bounding boxes correspond to the similarly activated area centered around the random patch.

Image Patches

: Lothar Len=
WA pferdefotoarchiv.de

Top 2 Prototype Top 1 Prototype

Top 3 Prototype

Figure 24. The first row represents a validation image from PASCAL VOC with three randomly selected patches red, green, blue. The
second to fourth rows show the closest prototypes to the green patch via its activation on itself and on the image containing the green patch.
In the second column, the bounding boxes correspond to the similarly activated area centered around the random patch.

Image Patches

Top 2 Prototype Top 1 Prototype

Top 3 Prototype

Figure 25. The first row represents a validation image from PASCAL VOC with three randomly selected patches red, green, blue. The
second to fourth rows show the closest prototypes to the blue patch via its activation on itself and on the image containing the blue patch.
In the second column, the bounding boxes correspond to the similarly activated area centered around the random patch.

Group assignment on Pascal VOC

Group
sheep

N J

Group assignment on Cityscapes

Group ' Group 7
bicycle rider

Figure 26. Top: for the classes dog and sheep on Pascal VOC, prototypes with the highest activation for the considered group represent
the head. Bottom: for the class bicycle of Cityscapes, prototypes with the highest activation for the considered group represent the bicycle
wheels, while for the class rider they mainly highlight the person’s upper body.

Figure 27. PASCAL VOC image with its predictions for the class cow and in particular the most common error for this class is with the
class sheep.

Figure 28. Group activations of the class cow for the image.

Figure 29. Group activations of the class sheep for the image.

Figure 30. Most activated prototypes represented by their training sample and their activation on the input image for Group 1 of class cow.

Figure 33. Most activated prototypes represented by their training sample and their activation on the input image for Group 1 of class
sheep.

Figure 34. Most activated prototypes represented by their training sample and their activation on the input image for Group 2 of class
sheep.

Figure 35. Most activated prototypes represented by their training sample and their activation on the input image for Group 3 of class
sheep.

	. Introduction
	. Related works
	. Method
	. Multi-scale prototype learning
	. Prototype grouping
	. Multi-stage training procedure

	. Experiments
	. Experimental setup
	. Results and discussion

	. Conclusion
	. Details on experimental set-up
	. Transferability of ScaleProtoSeg
	. Extension to large dataset
	. Sparsity Regularization
	. Group Overlap
	. Multi-scale prototype analysis
	. Sparsity and Computation Overhead
	. Group Representations and Assignments
	. Nearest Image Patches to Prototypes
	. Nearest Prototypes to Image Patches
	. Semantic meaning of groups
	. Failure case analysis

