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Supplementary Material

A. Overview of Supplementary Materials
The supplementary materials include the following addi-
tional details:
• Sec. B describes the details of our convolutional LoRA

decomposition, where we show the difference between
the original implementation and ours. We compare the
results visually in Fig. 10, where facial texture is accom-
panied by checkerboard artifacts using the original LoRA
paper’s code implementation [33].

• Sec. C provides details on the celebrity dataset and addi-
tional information regarding our ablation studies on the
effect of dataset size in Sec. 4.4.

• Sec. D provides additional results for Sec. 4.4, where in-
the-wild cat images are used to personalize pretrained
EG3D model following the same My3DGen procedures.

• Sec. E shows image inversion results without PTI [62] in
Fig. 12. We re-project latent code into personal convex
hull following Mystyle [53] for inversion where model
weights remain unchanged.

• Sec. F further discusses the interpolation results shown in
Sec. 4.2, particularly why the interpolation curve is dif-
ferent from that in Mystyle [53].

• Sec. G describes the detailed hardware configurations and
training time for our experiments.

• In Sec. H, we display failure cases for our experiments in
Fig. 13.

B. LoRA for Convolutional Layer
LoRA [33] is originally defined for matrix multiplication

for fully-connected layers. However, convolution operation
with C1 output channels, C2 input channels, and kernel size
of k× k is often implemented as matrix multiplication with
a matrix W under “im2col” [14] transform on the image X .
The matrix W has dimension W ∈ RC1×C2kk.

Convθ(X) = W im2col(X) (3)

Therefore, we can decompose matrix M for convolution
layers similar to LoRA. With a rank r LoRA decomposition,
let B ∈ RC1×r and A ∈ Rr×C2kk, we have the following
equation.

W = BA (4)

We found official LoRA [33] implementation performs the
following decomposition. Matrix W is assumed to have
dimension W ∈ RC1k×C2k, while B, A have dimension
B ∈ RC1k×r, A ∈ Rr×C2k. Ours differs from the original
LoRA implementation in two ways:

• LoRA showed weight matrix W ∈ RC1×C2kk that
maps from input space C2kk to output space C1 of
a layer can have low rank structure. It is unclear if
matrix W ∈ RC1k×C2k has low rank structure.

Figure 10. Following the same personalization pipeline, we com-
pare reconstructed results using the original LoRA code (middle)
and our own LoRA implementation (right). The original algorithm
introduces idiosyncratic artifacts, such as diagonal stripe patterns.
It is recommended to zoom in for finer details, especially around
the cheeks and forehead.

• We are surprised to find that the official implementa-
tion of LoRA directly interprets the memory content
of the matrix W ∈ RC1k×C2k as W ∈ RC1×C2kk

and perform convolution operation. We suspect this
is a bug. Even though the matrix W is trainable, we
suspect that such implementation has important conse-
quences on performance, as now we are equivalently
trying to find a low rank decomposition for a matrix
that has no clear meaning, and might not have a low
rank structure.

We compare ours with the official implementation of LoRA
in Fig. 10, where the official implementation introduces
checkerboard artifacts while our implementation is better
at keeping the original image content.

C. Dataset Size
Using the same dataset in Mystyle [53], we further pro-

cess the images following the preprocessing pipeline in
EG3D [12]. We show the number of images in the refer-
ence and test sets in Tab. 3. In Sec. 4.4, we conduct ablation
studies to investigate the effect of the size of the training
set. When tuning on 100 images, if the reference set size is
below 100, we use all the images in the reference set as the
training set, such as 97 for Dwayne Johnson and 92 for Xi
Jinping. Unless otherwise specified, we tune on 50 images
for the majority of our personalization experiments.

D. AFHQv2 Cats
We also extend our personalization method to cat faces.

Leveraging a photo album consisting of 22 in-the-wild im-
ages of one individual cat, we detect poses following [9] and
apply the same procedure used for human faces to person-
alize the pretrained EG3D-AFHQ model, which was pre-
trained on a dataset of 15000 animal images, including 5000
cat images across different identities and breeds.



Celebrity Reference set size Test set size
Barack Obama 192 13
Dwayne Johnson 97 12
Joe Biden 200 13
Kamala Harris 110 7
Michelle Obama 279 9
Oprah Winfrey 135 9
Scarlett Johansson 260 13
Taylor Swift 158 9
Xi Jinping 92 15

Table 3. The sizes of the reference and test sets of our dataset.

The results, showcased in Fig. 11, demonstrate that our
personalization technique significantly enhances the quality
of the pretrained triplane representations for cat faces. This
successful extension of our approach demonstrates the ver-
satility and effectiveness of our method across different do-
mains, paving the way for personalized 3D generative mod-
eling of full human bodies, other animals, or objects.

Figure 11. Comparison between a pre-trained model and a person-
alized model for inverting an in-the-wild cat photo.

E. Image Inversion without PTI
In Sec. 4.2, we perform image inversion tasks using

PTI [62] to align with previous works [12, 71], where PTI
requires changing the model weights for the best inver-
sion quality. Nevertheless, we provide inversion results fol-
lowing Mystyle [53] where the model weights remain un-
changed and only the latent code is re-projected into the
convex hull. As shown in Fig. 12, although personalization
helps maintain identity in the inversion tasks, it still lacks
facial details for both full fine-tuning and ours, compared to
PTI. Further works may design an encoder for EG3D inver-
sion similar to TriPlaneNet [6].

F. IDsim Curve Shape in Interpolation Tasks
Interestingly, unlike the previous findings of

Mystyle [53], there is no significant difference in IDsim

scores between the interpolated latent codes and the
anchors. The interpolation IDsim curve in Mystyle follows
a reserved U-shape, while our curve is flatter, as shown
in Fig. 4. It is hypothesized that this lack of difference
may be due to both our IDsim metric design and EG3D’s
3D advantage, where the extreme properties of anchors,

Figure 12. Image inversion results without optimizing network
weights. F.T. indicates fine-tuning and ours is My3DGen.
such as pose, have a smaller impact on IDsim compared to
2D-GANs.
G. Training Time

We perform our personalization experiments on 4
NVIDIA RTX A6000 GPUs. Our total training time is 5
hours with LoRA, compared to 6 hours without LoRA.
H. Failure Cases

My3DGen struggles to reconstruct objects that obscure
the face, such as hands and phones, even with PTI. The
cause for this is a deficiency in corresponding images of ob-
jects in the pre-training facial dataset, FFHQ. Further works
may design an EG3D-specific encoder that can encode ob-
jects into the latent space similar to Live3DPortrait [71].

Figure 13. Cases where the inversion method fails to reconstruct
objects.
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