
A. Appendix

Table 5. Overview of parameter setups of ViT architectures.

Settings ↓ ViT (CIFAR-10) ViT (CelebA)

hidden dim 128 512
num layers 6 6
num heads 4 8
image size 32 64
patch size 4 4
mlp dim 256 512
drop out 0.1 0.1

num parameters 0.81M 9.63M

Figure 7. Visualization of LFBA poisoned images and triggers
under different ϵ and n. The pixel value of triggers is amplified by
30×.

A.1. DCT and IDCT Functions

Given an image x(h,w, c), its frequency form
xf (hf , wf , c) is calculated by the DCT function D(·)
as follows:

xf (hf , wf , c) = D(x(h,w, c)) (9)

= V (hf )V (wf )
H−1∑
h=0

W−1∑
w=0

C−1∑
c=0

x(h,w, c) cos
[
(2h+1)hfπ

2H

]
cos

[
(2w+1)wfπ

2W

]
(10)

for ∀h, hf = 0, 1, ...,H − 1 and ∀w,wf = 0, 1, ...,W −
1, where H,W,C represent the height, width and number
of channels of the given image. For simplicity, we assume

H = W , therefore V (0) =
√

1
4H and V (k) =

√
1

2H for

k > 0. Accordingly, D−1(·) denotes the IDCT as follows:

(a) GTSRB (b) CIFAR-10

Figure 8. The impact of attack effectiveness under a wide range of
poison ratios (%).
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A.2. Computational Cost of Trigger Optimization

To demonstrate the practicality of the selected optimiza-
tion method in a real-world scenario, we evaluate the com-
putational overhead of trigger optimization using SA. Ta-
ble 7 showcases the searching time to generate the opti-
mal frequency trigger for each dataset. We can see that SA
achieves a reasonable optimization time, averaging around
tens of seconds. Therefore, SA is a suitable choice for our
optimization method in LFBA.

A.3. Poison Ratio ρ

ρ is the fraction of poisoned samples in the training
dataset of the adversary. We test the attack effectiveness
under different ρ varying from 0.1% to 10%. Although we
increase ρ from a wide range, LFBA does not harm the ASR
of the victim models. As stated in Figure 8, this fraction
setting cannot degrade the ACC and meanwhile, we would
like to examine the lower bound of the fraction that LFBA’s
effectiveness can withstand. Even when ρ is 0.1%, LFBA
can still provide a high ASR, around 80% for GTSRB. We
also find that sensitivities to poison ratio can vary among
tasks. In CIFAR-10, LFBA achieves above 86% ASR un-
der ρ = 0.5% while it drops rapidly, around 20%, when ρ
reduces to 0.1%.

A.4. Transferability

We test LFBA’s transferability on CIFAR-10 dataset
across a wide range of typical model architectures including
ViT, GoogLeNet [48], ResNet18 and VGG16 from small to
large size (see Table 8 for the number of model parameters).
We use each surrogate-victim model pair to search trigger
and train the poisoned model.

In Table 9, we first verify that the attack effectiveness
is not harmed by the surrogate-victim model mismatch and



Table 6. The summary of tasks, and their corresponding models.

Task Dataset # of Training/Test Images # of Labels Image Size Victim Model Surrogate Model

Handwritten Digit Recognition MNIST 60,000/10,000 10 28×28×1 3 Conv + 2 Dense VGG11
Object Classification CIFAR-10 50,000/10,000 10 32×32×3 PreAct-ResNet18 / ViT VGG16

Traffic Sign Recognition GTSRB 39,209/12,630 43 32×32×3 PreAct-ResNet18 VGG16
Object Classification Tiny-ImageNet 100,000/10,000 200 64×64×3 ResNet18 VGG19

Face Attribute Recognition CelebA 162,770/19,962 8 64×64×3 ResNet18 / ViT VGG19

Table 7. The computational cost of trigger optimization via SA
across different datasets.

Dataset MNIST GTSRB CIFAR-10 T-IMNET CelebA

Time 5 s 61 s 39 s 35 s 192 s

Table 8. Overview of total parameters of surrogate and victim
models.

Model Number of parameters

ViT 0.81 M
GoogleNet 6.80 M
ResNet18 11.69 M
VGG16 138.37 M

attains high ASRs (> 99%) for all model pairs. We also
observe that having the same surrogate and victim mod-
els does not always result in the best ASR. Additionally,
a larger size of surrogate architecture does not necessar-
ily maximize the attack effectiveness. For example, using
GoogLeNet as the surrogate model which is smaller than
ResNet18 can provide the best ASR of 99.45%. In conclu-
sion, the attacker could deliver a successful attack without
detailed information about the victim model.

Table 9. Transferrability of LFBA across different surrogate-
victim model architecture pairs via ACC (%) and ASR (%) on
CIFAR-10. LFBA provides practical transferability between sur-
rogate and victim models when estimating the effectiveness of
trigger.

Victim→ ViT GoogLeNet ResNet18 VGG16

Surrogate ↓ ACC ASR ACC ASR ACC ASR ACC ASR

ViT 82.75 99.68 93.61 99.43 92.79 99.29 91.08 99.33
GoogLeNet 82.11 99.58 93.31 99.01 93.27 99.45 91.79 99.19
ResNet18 82.63 99.91 93.69 99.23 93.23 99.37 91.70 99.41
VGG16 83.12 99.43 93.16 99.08 93.66 99.19 92.04 99.37

A.5. Explanations of Robustness through Fre-
quency Perspective.

We showcase poisoned images and their frequency dis-
parities (compared to clean images) under the image trans-
formations in Figure 9. We can see that the frequency dis-
parities of BadNets remain similar to the original ones af-

ter JPEG compression while the Gaussian filter destroys the
BadNets patterns on both datasets. This proves the fact,
as shown in Table 4, that BadNets is effective against JPEG
compression but fails to survive after Gaussian filtering. For
FTrojan and LFBA-Full, we cannot see any frequency pat-
terns after these transformations. However, the frequency
disparities of LFBA-Low can be clearly seen even after such
operations, indicating our low-frequency attack is robust
against preprocessing-based defenses. We note that low-
frequency components exhibit greater resilience to image
transformations than mid- and high-frequency components.

A.6. Limitations.

In this work, we concentrate on various computer vi-
sion tasks, which have been the focus of numerous existing
works [10,11,39,43,54]. In the future, we intend to expand
the scope of this work to other vision tasks, e.g., objection
detections and semantic segmentations.

The trigger search process is executed in a hybrid GPU-
CPU environment during trigger evaluation and optimiza-
tion phases. It deserves further efforts to design a GPU-
accelerated SA to minimize data transmission across hard-
ware, thus improving the efficiency of our proposed LFBA.

Note that black-box attacks such as LFBA fail to achieve
the same level of robustness against state-of-the-art back-
door defenses as white-box methods due to the lack of con-
trol over the training process of the victim model. To further
enhance the robustness against those defenses, one would
combine advanced training mechanisms proposed in white-
box attacks with our frequency trigger to develop a more
stealthy and robust backdoor attack that can bypass coun-
termeasures.



(a) CIFAR-10

(b) CelebA

Figure 9. Comparison of poisoned images with their corresponding frequency disparities (amplified by 5×) to clean images of existing
attacks under different image preprocessing-based defenses. Each frequency disparities spectrum is calculated based on the original clean
image’s spectrum. These image transformations can effectively remove the trigger pattern through frequency domain, while the disparities
spectrums of our LFBA-Low attack still contain original backdoor patterns.
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