Supplemental Material
Reproducibility Statement

All results presented in this work are reproducible using
the code associated with our research, available at https:
//jugit.fz-juelich.de/ias-8/mdeaux.

Ethics Statement

Our research relies on publicly available datasets, en-
suring transparency and reproducibility in our experiments.
Additionally, for datasets obtained through agreements,
such as Matterport, we adhere to the respective terms and
conditions outlined in the agreements [44].

Environmental Impact

Recognizing the environmental impact of computational
resources, we are mindful of the compute resources used
in our experiments. The experiments, conducted on the
aforementioned hardware setup, resulted in an estimated en-
vironmental impact of approximately 29.25 million mWh,
equivalent to 0.0117 metric tons of carbon dioxide. This is
comparable to the emissions from driving 5.1 miles in the
average gasoline-powered passenger vehicle in the US [2].
For a comprehensive overview of the environmental impact
of compute [49], we refer to metrics provided by platforms
like the ML CO2 Impact calculator [28].

A. Training Details

As mentioned in Section 4 of the main paper, we adopt
the DINOV?2 training procedure [46]. In particular, we use
AdamW with initial learning rate of 0.0001 and weight de-
cay of 0.01, and a cosine scheduler with linear warmup for
1/3 of the iterations. In total we train for 38400 steps with a
batch size of 4 (2 images per 2 GPUs). For Taskonomy we
use a batch size of 16 (across 8 GPUs), whereas for Matter-
port we train twice longer. When using our method, we du-
plicate the optimizer and learning rate schedulers, and scale
the DPT decoder learning rates by our parameter .

For the experiment using the Depth Anything backbone,
we adapt the Depth Anything training procedure to our
scheme. In particular we use an initial learning rate of
0.000161 and a cosine scheduler without linear warmup.
We train for 38400 steps with a batch size of 16 (2 images
per 8 GPUs).

B. Hardware Details

In our experiments, we leveraged high-performance
computing (HPC) nodes equipped with 4 NVIDIA A100
GPUs with 40GB VRAM and 48 CPU cores. For most
of the experiments the training process used only 2 of the
GPUs, while for some we used 8 GPUs.

C. Additional ablations
C.1. Single-Label Dense Classification

Motivated by the promising outcomes observed with our
MLDC task as an auxiliary task for Monocular Depth Es-
timation, we simplify the problem to Single-Label Dense
Classification to investigate the viability of using straight-
forward classification datasets as auxiliaries for MDE. This
involves extracting the dominant class for each image seg-
mentation mask and output during training and computing
the CrossEntropyLoss based on the dominant classes. As
depicted in Table 5, the results for single-label and MLDC
are comparable. This suggests that classifying the dominant
class could potentially suffice as an auxiliary task for MDE.
We encourage further exploration with additional single-
label classification datasets, such as ImageNet [16], to val-
idate whether they can contribute further improvements in
MDE quality.

C.2. Comparison of Single and Multi Source Auxil-
iary Tasks

We extend our investigation to ascertain if our approach
can also be applied within a single dataset, even though this
is not the primary focus of our research. For SUN RGBD
we use the original provided semantic segmentation labels,
whereas for the other datasets we use pseudo labels gener-
ated using the approach used in PolyMax [70] for Taskon-
omy. Note that the quality of the pseudo-labels is not guar-
anteed to be high, especially when images contain objects
unknown to the chosen pseudo-labeler model. This can lead
to noisy labels and potentially degrade the performance.
The results reported in Table 6 reveal that our method can
also improve the MDE quality when only using a single
dataset and pre-processing for both tasks, while the quality
gains for each MDE dataset are worse compared to using
multiple auxiliary data sources. On one hand, this demon-
strates the versatility of our method, showing that it can pro-
vide improvements in both single and multiple sources sce-
narios. On the other hand, these results suggest that using
multiple and diverse auxiliary sources should be preferable
to ensure higher quality gains.

D. Additional qualitative results

We present additional qualitative results for each dataset
to demonstrate the effectiveness of our approach. Each row
should be considered individually.



Table 5. AbsRel x10* (]) scores of the best task w.r.t. the DINOv2 baseline. The last column shows the result of Single-Label Dense
Classification, while others are taken from Table 3. The indoor-outdoor dominated MIX6 dataset with o = 0.9 is used for all the

experiments. The best and second-best results are highlighted in bold and izalic, respectively.

MDE In Aux Tasks

Datasets MIX6 DINOv2 Classification Segmentation Reconstruction S-Classification Gain %
NYUv2 X 809+ 10 696+ 3 755+ 6 838+ 7 727+ 8 13.9
SUN RGBD v 1128+ 11 1024+ 10 1069+ 9 1111+ 5 1007 = 11 10.3
Matterport3D X 1874+ 19 1728+ 9 1793+ 13 1805+ 6 1720+ 5 8.2
Taskonomy X 1506+ 13 1481+ 4 1567+ 12 1543+ 6 1491 = 20 1.7
DIODE In X 3588+ 19 3239+ 26 3451+ 47 3368 £ 31 3289+ 59 9.7
DIODE Out X 5820+223 4965+162 5085+172 4530+ 91 4926 + 121 22.2

Table 6. AbsRel x10* ({) scores on various depth datasets using different auxiliary tasks and percentage gain of the best task w.r.t. the
DINOV2 baseline. For every dataset, the same dataset is used as auxiliary with o = 0.9, either with original or pseudo labels. The best and

second-best results are highlighted in bold and italic, respectively.

MDE
Datasets

Pseudo
Labels

Aux Tasks — Same Dataset Only

DINOv2 Classification Segmentation Reconstruction Gain %

NYUv2

SUN RGBD
Matterport3D
Taskonomy
DIODE In
DIODE Out

v 809+ 10
X 1128+ 11
4 1874+ 19
v 1506+ 13
v 3588+ 19
v 5820+223

762+ 25 838+ 32
1105+ 32 1161+ 7
1841+ 21 1856+ 17
1576 + 16 1606+ 5
3447+ 67 3554+ 90
5918+ 88 6040+ 60

846
1167 £
1864 +
1607 £
3620 +
5682 +

29 5.8
12 2
15 1.8
8 -4.6
26 3.1
96 24
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Figure 6. Results on NYU with MIX6 auxiliary MLDC task. From left to right: image and respective ground truth, baseline and our
method predictions, and error difference between the last two w.r.t. to the ground truth.
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Figure 7. Results on SUNRGBD with MIX6 auxiliary MLDC task. From left to right: image and respective ground truth, baseline and our
method predictions, and error difference between the last two w.r.t. to the ground truth.
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Figure 8. Results on Matterport with MIX6 auxiliary MLDC task. From left to right: input image and respective ground truth, baseline
and our method predictions, and error difference between the last two w.r.t. to the ground truth.



Input Image Ground Truth  DINOv2 Baseline: a = 1.0 Proposed: a =0.9 erfg=10—€rMg=o09

Figure 9. Results on Taskonomy with MIX6 auxiliary MLDC task. From left to right: input image and respective ground truth, baseline
and our method predictions, and error difference between the last two w.r.t. to the ground truth.
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Figure 10. Results on DIODE Indoor with MIX6 auxiliary MLDC task. From left to right: input image and respective ground truth,
baseline and our method predictions, and error difference between the last two w.r.t. to the ground truth.



Input Image Ground Truth DINOv2 Baseline: a = 1.0 Proposed: a =0.9

Figure 11. Results on DIODE Outdoor with MIX6 auxiliary MLDC task. Left to right: input image and ground truth; baseline and our
method predictions; error difference relative to ground truth highlighting visible improvements in the facade behind the trees.



