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A. Limitations and Failure Case Analysis
The results show that P-MoLE’s overall performance

across all sites is better than that of the SOTA models. How-
ever, it performs worse than the SOTA on Site C of En-
doPolyp dataset. We investigate the reasons behind this
poor performance. When all locally trained models fail to
identify a target during inference, no useful information is
transmitted through the SAM to produce the segmentation.
We illustrate this scenario in Figure 1 where all four models
completely mis-segment the polyp, leading to predictions
that lack relevant information related to the ground truth.
We hypothesize that as long as there are at least two good-
quality segmentations, P-MoLE can distinguish which pre-
dictions to weigh heavily and which to ignore. This hy-
pothesis comes from the ablation study in Tab. ??, showing
a large increase in performance from n=1 to n=2.

In conclusion, in cases where all members of the team
of experts produce poor-quality segmentations, P-MoLE
makes entirely incorrect predictions. In the future, we plan
to solve this by designing better architectures for the indi-
vidual local models so these misses are avoided.

In federated learning or personalized federated learning,
the weights are shared with the centralized server in each
round of federation, while in P-MoLE, we share this only
once. To this end, we make the same assumption as many
federated learning papers that we can not infer the training
data from the shared weights [9, 18, 19].

B. Detailed Dataset Descriptions
Endoscopic polyp (EndoPolyp) dataset contains a to-
tal of 2187 samples, including images and corresponding
masks, which have been divided into four different sites
having 1000, 380, 196, 612 samples, respectively, accord-
ing to work [2,3,6,13]. All images and masks are resized to
384 × 384 and divided into train-test sets where the train set
contains 900, 328, 170, and 550 samples, respectively, and
the rest are considered as the test set according to work [5].

Retinal Fundus (RIF) dataset [1, 12, 14] comprises 1060
images and corresponding masks, which are divided into
four different sites as per the work done by [8]. Each site

Table 1. Quantitative performance on RIF dataset. We present the
performance on each site and overall performance by taking their
mean. The best performance is highlighted in bold. This table
shows the results when one element in the ensemble is intention-
ally poisoned. Results show that even with this poisoned model,
P-MoLE can still achieve state of the art performance.

Site
Dice ↑

A B C D Average
Local Models 93.92 88.36 91.03 91.20 91.13
FedAvg [10] 86.86 77.72 87.17 88.28 85.01
FineTune [17] 92.19 89.91 91.77 92.21 91.52
DITTO [7] 92.02 90.34 91.78 92.00 91.53
FedRep [4] 92.23 89.41 91.71 92.19 91.38
FedBABU [11] 92.53 89.20 91.80 92.67 91.55
LC-Fed [16] 92.63 90.62 92.39 92.91 92.14
FedDP [15] 92.96 91.33 92.46 93.03 92.44
P-MoLE (Poisoned) 94.02 91.21 92.26 92.81 92.56
P-MoLE (ours) 95.33 92.66 94.01 94.03 94.01

contains 101, 159, 400, and 400 samples. All images in
the dataset have been processed according to the work done
by [5], where they are resized from their original size of
800 × 800 to 384 × 384 by performing center-cropping.
The dataset has been split into a train-test set following the
work done by [8], with the train set consisting of 80, 129,
320, and 320 samples for each site, respectively, while the
remaining samples are included in the test set.

C. Impact of Bad Local Models
We conducted an ablation study to investigate whether

the performance of P-MoLE depends on the good training
of the local models. In other words, whether a bad lo-
cal model can significantly degrade the performance of P-
MoLE. To validate this, we run a simple experiment where
one of the frozen models in the ensemble is intentionally
poisoned by totally randomizing all weights. Thus, this
model will only predict garbage. Then, P-MoLE is trained
with this poisoned model and included in the team of ex-
perts. Results, shown for RIF in Tab 1, outline that even
with one poisoned model, while slightly worse than with-
out poisoned models, the poisoned P-MoLE (92.56 Dice)
still performs slightly better than the state of the art (FedDP,
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Figure 1. Demonstration of a case where P-MoLE fails to make a correct prediction. Here, M1, M2, M3, and M4 denote the predictions
from four local models, respectively. When these noisy predictions pass through the P-MoLE, it makes completely inaccurate predictions
as no relevant feature is present.

Figure 2. Example from Site C in the EndoPolyp dataset showing the effect of random channel shuffling. In the top example, we see
P-MoLE has overfit to LP3, copying it almost identically for the final prediction. Using random shuffling, LP3 will not be in the same
location every time, thus the model cannot hyper focus on one channel, forcing it to pay attention to all channels. The result is that the
noise is ignored and a much better segmentation.

92.44 Dice) with one less site’s data and a model actively
predicting junk. Each model is trained 5 times to ensure sta-
tistical relevance. This shows the resiliency of the algorithm
against poor-quality inferences and its ability to recognize
poor models and ignore them in the final prediction.

D. Impact of Random Channel Shuffling

Random channel/prediction shuffling only applies to the
training of P-MoLE and not to inference or the training of
the local models. This is just referring to the channel order
within the team of experts and does not affect the training of
the local models which are trained independently. A qual-
itative example is shown in Fig. 2. In this case, instead of
overfitting to Local Prediction 3 (LP3) and copying it ex-
actly, shuffling these channels around the model ignores the
noise in LP3 and produces a better segmentation.
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