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Figure 1. We present EgoSonics, a method to synthesize audio tracks conditioned on silent in-the-wild egocentric videos. Our method
operate on videos at 30 fps, and can synthesize audio that is semantically meaningful and synchronized with events in the video (“dish hits
the sink” or “lawn mower turned off”). We also propose a new method to evaluate audio-video synchronization quality.

EGOSONICS - SUPPLEMENTARY

A. User Study

We conducted an user study for a subjective evaluation
of our synthesized audios. With randomly selected 15 par-
ticipants from different backgrounds and asked them to do
a 10 minutes survey using Google Forms. The survey pre-
sented 16 videos with audios to the participants and asked
them to rate their realism on a scale of 1-5 (1 being ”Doesn’t
Sound Real” and 2 being ”Sounds Real”). Participants were
also asked if the audio is contextually relevant to the video,
if the events in the video and the corresponding audio are
synchronized. To verify that our method doesn’t overfit to
one category of sounds, we also asked the participants to
evaluate if the audio seems to be from a different category
(e.g., a carpentry sound coming from a vacuum cleaner).

The following are the outcomes of this study:

1. 80% of the users believe that 90% of our audios are
realistic with an Mean Opinion Score (MOS) [11] of
more than 4.0. This means that EgoSonics is able to
generate realistic audios.

2. In 100% of the cases, users preferred our audio over the
current SOTA V2A model (Diff-Foley). This means all
the 15 users believe that all of our audios are better that
the baseline.

3. In more than 75% cases, users were unable to distin-
guish our audio from the GT audio, and rated both to
be realistic. This again proves that EgoSonics is able to
generate realistic and synchronized audio.

4. In more than 80% of the cases, users did not find our
audios to be belonging to another category, meaning
that EgoSonics doesn’t overfit to any particular class
and is able to generate all kinds of daily activity audios.

B. Syncronet
We propose Syncronet, a model to learn the correspon-

dence between audio and video modalities by learning cor-
relation between the input video embeddings and the au-
dio frequencies for every time step t. ControlNet [13] is
a current state-of-the-art neural network architecture that
was introduced to enhance large pretrained text-to-image
diffusion models with spatially localized, task specific im-
age conditions providing pixel-level control. Over the time,
ControlNet has been shown to work for a variety of con-
trolled image generation tasks including but not limited to
spatial conditions like Canny edges, Hough lines, user scrib-
bles, human key points, segmentation maps, shape normals,
depths, cartoon line drawings, etc. ControlNet basically
works by processing these spatial conditioning and injecting
additional control signals to the pretrained diffusion models.
However, generating time-aware control signals to guide the
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Figure 2. Syncronet training.

output in temporally consistent manner has not been exten-
sively studied using ControlNet. In fact, to the best of our
knowledge, only Music ControlNet [12] uses it to generate
partially-specified time-varying control signals. In this pa-
per, we modified the ControlNet architecture to operate over
given video embedding in both encoded feature space, and
time space to generate control signals that can provide local
pixel-level control to the Stable Diffusion’s UNet model to
generate time-consistent audio spectrograms EA. The gener-
ated spectrograms possess a strong correlation with the input
video embedding and this results in highly synchronized
audio of daily activity videos - where most previous methods
fail due to design constraints.

We use Syncronet to provide control signals to Stable
Diffusion (SD) 2.1. As a first step, we make a trainable
copy of the entire UNet based encoder of SD along with the
middle block and initialized them with the same pretrained
weights of SD 2.1. The goal here is to use these trainable
encoder to generate control signals that can be plugged into
the pretrained SD’s UNet decoder blocks providing pixel-
level control to output (see Fig. 2). The trainable copy is
connected to the frozen SD through zero convolution layers
to avoid any influence of noisy control signals during the
start of the training.

Similar to ControlNet, the input conditioning image (EV )
of size 512 × 512 is converted to a feature space of size
64× 64, that matches the feature space of Stable Diffusion,
through a pre-trained image encoder ϵ. We used the same
convolution based image encoder as used in [13], and initial-
ized it with the same weights. The image encoder is kept
frozen throughout the training. The encoder ϵ extracts a
feature space vector cf from the input conditioning EV .

As shown in Fig. 2, the noisy sample x is generated
through forward diffusion process, where the input audio
spectrogram of size 512× 512 is encoded to a feature vector
of size 64× 64 through pre-trained VAE encoder. We used
the same pretrained VAE encoder-decoder network as SD
and initialized them with the same weights. Noise is added

to the feature vector to get a noisy sample x for T = 1000
steps. Then the encoded video embedding ϵ(EV ) is added to
the input noisy data sample x. h = x+ ϵ(EV ). The added
sum is further enriched by passing it through a self-attention
block.

Self −Attn(Qh,Kh, Vh) = Softmax(
QhK

T
h√
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)Vh (1)

h = h+ Self −Attn(Qh,Kh, Vh)

where, Qh, Kh, Vh represents the Query, Key, and Value
matrices derived from h. As we have seen in Table ??, only
using this self attention block alone is sufficient to gener-
ate good quality audio spectrograms with an FID of 34.33.
However, as the alignment score suggests, this alone is not
sufficient to guide the diffusion model generate temporally
consistent synchronized audio.

Thus, to inject the temporal consistency to the control sig-
nals of Syncronet, we also apply the cross-attention between
the original video embedding EV and h to guide the audio
spectrogram generation directly with the time steps of EV .
This helps the model effectively learn the synchronization
between the time domain and the rich feature space of Stable
Diffusion, as we can see through a significant improvement
in the alignment score. There are two options to apply cross-
attention, either by using Query from EV and Key and Value
matrices from h, or vice-versa. In our case, we use the latter
approach as follows:

Cross−Attn(Qh,KV , VV ) = Softmax(
QhK

T
T√
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)VV

(2)

h = h+ Cross−Attn(Qh,KV , VV )

where, Qh, KV , VV represents the Query, Key, and Value
matrices derived from h and EV , respectively. After passing



Algorithm 1 Generate Control Signals

Require: x: Input Noisy Sample
Require: EV : Video Embedding
Require: timesteps: Timestep tensor
Ensure: control signals: List of control signals

1: t emb← timestep embedding(timesteps)
2: emb← time embed(t emb)
3: context← EV
4: guided hint← encoder(EV )
5: control signals← [ ]
6: h← x
7: for (module, zero conv) ∈

(UNet.encoder blocks,Syncronet.zero convs) do
8: if module == UNet.encoder blocks.first block

then
9: h← module(h)

10: h← h+ guided hint
11: guided hint← None
12: else
13: if module is TimeStepBlock then
14: h← module(h, emb)
15: else if module is SpatialTransformer then
16: {Apply self-attention and cross-attention}
17: h← module(h, context)
18: end if
19: end if
20: Append zero conv(h, emb, context) to

control signals
21: end for
22: h← UNet.middle block(h, emb, context)
23: Append zero conv(UNet.middle block out(h, emb, context))

to control signals
24: return control signals

through a linear layer, a zero convolution layer is applied to
get the control signal cn.

The Stable Diffusion’s UNet architecture contains 12 en-
coder, 12 decoder and 1 middle blocks. Similar to [13], our
trainable copy contains 12 encoder and 1 middle block con-
sisting of several Vision Transformers (ViTs). Self-attention
and cross-attention is applied in all the Spatial Transformers
of encoder and middle blocks as described in algorithm 1.

These control signals are added to the 12 skip-connections
and 1 middle block of the Stable Diffusion’s UNet decoder
block providing local pixel-level guidance at 64× 64, 32×
32, 16× 16, 8× 8 resolutions.

C. Dataset and Training

Ego4D [2] is a large scale multimodal dataset consisting
of around 3600 hours of daily activity videos. However, not
every video in the dataset comes with corresponding audio,

due to privacy concerns or technical limitations. Only half
of the dataset has the corresponding audio. Now, when we
look at the dataset, it contains a large amount of person-to-
person conversations in shops, homes, outdoor scenes, etc.,
which doesn’t serve any purpose in our use case. Thus, we
only selected those videos that belongs to certain categories
like cooking, carpentry, laundry, cleaning, working, farmer,
mechanic, yardwork, blacksmith, etc. We believe, only such
categories are useful in learning corresponding between au-
dio and video for day-to-day activities. Even, in these videos,
not every section of the video is important as there’s a lot
of redundancy in the data. To overcome this limitation, we
calculate the Root Mean Square (RMS) value of a 10 second
clip randomly picked from the dataset as follows:

SRMS =
√

1
N

∑N
i=1 x

2
i

where, N is the total number of samples in audio wave-
form, and x is the value of each sample. After calculating
the RMS value of each 10 second long audio sample, we
compared it against a manually set threshold. If the sample’s
RMS value exceeded the threshold, we used it for training.
This gave us a rich set of audio-video pair containing daily
activities. We randomly picked a non-overlapping set of
150K such samples, which were used for training. Each
10 seconds long video is sampled at 30 frames per second
and contains 300 frames in total. The corresponding audio
is sampled at 22KHz, and converted to audio spectrogram
using Short-Time Fourier Transform [6]. The audio spec-
trogram is resized to 512 × 512 from 430 × 1024 to make
it compatible with Stable Diffusion’s encoder-decoder net-
work.

To get a more useful and compact video representation,
we use video embedding as the representation of videos.
Video embedding is a feature rich image-like representation
of the video where each video frame is represented as a ver-
tical vector of shape 1 × 512. 300 such vectors are placed
one after the other in the same sequence as frame number to
get the video embedding of shape 300 × 512. Each video
embedding is resized to 512× 512 using bicubic interpola-
tion to make sure it aligns with each time-step in the audio
spectrogram.

Training of Syncronet has been done using the same loss
functions as ControlNet [13]. We use DDIM [3] for faster
and consistent sampling. Upto 1000 time steps were used in
the forward process, and 20 during the denoising. Training
was done using AdamW optimizer with a learning rate of
1e− 4.

E. Audio Super-Resolution
To upsample the generated audio spectrograms EA from

a resolution of 512 × 512 to 512 × 1024, we trained s
small 5 layer Convolutional Neural Network (CNN) with



16, 32, 64, 64, 32, 1 output filters. Each layer is followed by
ReLu activation and Batch Normalization. Sigmoid is used
as the final activation to keep the values in [0, 1]. The model
was trained using pairs of original audio spectrograms of
shape 512× 1024, and their down sampled version of shape
512 × 512 using Mean Square Error (MSE) loss. Adam
optimizer was used for the optimization and a learning rate
of 0.001 was used. The model was trained for 10 epochs
with a dataset of 200K audio samples.

F. Video Summarization

Video Summarization is a long studied task which in-
volves providing a short summary of a scene in a given video.
It has been widely accepted that the audio contains rich in-
formation about the scenes and can even provide sufficient
cues to reconstruct a scene geometry [7, 10]. We leverage
this fact that audio provides additional cues about the scene
through the easily identifiable sounds associated to improve
the video summarization task. Our aim is to incorporate
the audio generated from our method alongside the input
video frames, and observe an improvement in the prediction
accuracy of corresponding scene summary. We used a very
simple setup to test this hypothesis as presented in Fig. 3.
The input video frames are encoded to a rich feature space
using the pretrained CLIP encoder. Initially, when the toggle
switch is in ”OFF” state, the Convolutional Neural Network
(CNN) takes the video embedding EV as the input, along
with a zero vector as audio embedding eA, and predicts the
text embedding c′t. The ground truth text embedding is es-
timated using the one sentence text summary after passing
it through the CLIP text encoder. Ego4D dataset provides
short narrations describing the activity of the scene. We
used these narrations as the scene summary. The CNN is
trained using MSE loss and the parameters are optimized
using Adam optimizer with a learning rate of 5e−3.

When the toggle switch is ”ON”, that is, when the the
zero vector eA is replaced with the GT audio embedding, the
CNN takes in this additional input and concatenates it with
the video embedding vector through convolution. Similar
as before, the model tried to predict the text embedding and
the CNN is trained until convergence. We use a well known
audio compression method EnCodec [1] to encode the audio
waveform into a more rich neural codec representation.

Once the model is trained, we compared it’s performance
on the test dataset using various methods. The results are
presented in Table ??.

G. Video-to-Text Embedding MLP

We trained a small two layer MLP that takes a normalized
video embedding EV , and generates a vector of shape 512,
which acts as a text embedding ct to the stable diffusion
model. The MLP was trained using 200K pair of video and

text embedding using MSE loss and Adam optimizer.

H. Synchronization Metrics

An effective way of measuring the audio-video alignment
is missing in the field of audio-visual learning. Thus, inspired
by Diff-Foley [5], we introduced a Vision Transformer based
metrics (Alignment Score) that can calculate the synchro-
nization between audio and video. Unlike Diff-Foley, we
used ViT-B32 as a feature extractor to get audio features
from EA, and video features from EV , and then use 5 Lin-
ear layers, each followed by a ReLu activation. We uses a
pre-trained ViT-B32 trained on IMAGENET1K V 1. The
linear layers were trained using MSE loss and Adam opti-
mizer with a learning rate of 0.0001. Our training dataset
consists of 200K samples, out of which 100K were labelled
as 1 and the remaining 100K as 0. Audio samples belonging
to the same video were all labeled as 1 and accounts for
50% of the training data. 25% data is the audio samples
randomly assigned with any video other than the original
video. These were labeled as 0. Remaining 25% samples
came from randomly shifting the audio anywhere between
1−5 seconds from the true audio-video pair. These were also
labeled as 0. Our classifier reached an accuracy of 97% on
testing dataset comprising of 20% of the training data kept
separately. If the trained model classifies an audio-video pair
as anything close to 1, it means the two modalities are accu-
rately aligned. EgoSonics scores an average accuracy of 92%
on test dataset meaning that we significantly outperforms the
existing methods in better synchronizing audio.

For calculating Alignment Score (AS) at 15 FPS, we
replaced the alternate image embeddings Ei

V with their pre-
vious ones Ei−1

V , to ensure it’s consistent with the trained
model. Similarily, we did for testing at 4 FPS.

H. Comparison with Baselines.

We compared our model against 3 different baselines:
Diff-Foley, Im2Wav, and Make-an-Audio [4, 5, 9]). Im2Wav
samples the input audio at 16 KHz and generates an audio of
length 5 seconds. Make-an-Audio also samples at 16 KHz,
but generates an audio of length 9-10 seconds with the inter-
mediate spectrogram representation of 80× 624. Diff-Foley
also samples at 16 KHz to generate an audio of length 8
seconds via audio spectrogram of shape 256× 128. On the
contrary, we samples the input audio waveform at a higher
22 KHz sampling rate and also generates longer audio sam-
ples of 10 seconds. Using Stable Diffusion [8] allowed us
to generate high resolution spectrograms that can fit more
frequency bins and longer temporal length. For calculat-
ing the metrics of baselines, we make sure to use the same
length ground truth audio wave as they generate for a fair
comparison. We fine-tuned the Im2Wav, Make-an-Audio,
and Diff-Foley’s CAVP model for a few iterations on our



Figure 3. Video Summarization.

dataset before testing.

I. More Results
Fig. 5 shows more results generated from our model. We

have used a different color scheme for spectrograms for a
different perspective.

J. Failure Cases, Limitations, and Ethical Con-
siderations

We also analyzed the failure cases. Most of the failure
cases can be classifier into two categories: temporal mis-
alignment and context-level misalignment. The temporal
misalignment refers to cases where the model is able to pre-
dict contextually meaning audio, however, it’s misaligned
with the input video. Fig. 4(a) shows some of the misaligned
results. The main factor contribution to the misalignment is
the lack of rich visual information is most cases. For exam-
ple, in the first case, a carpenter is polishing a steel bar with
a rotating brush and the sound is made when they both are
in contact. However, from the video, it’s not very clear if the
steel bar is actually in contact with the rotating brush or no.

The other type of failure happens when the model is not
able to predict the contextually acceptable audio. This is
mainly a reason of lack of data. For example, since there
are a very few samples of musical instruments in the Ego4D
dataset, our model doesn’t perform very well on such videos.
The similar thing happens if the model encounters people
interacting. We believe that such challenges can be solved by
training our model on a large amount of dataset comprising
millions of audio-video pairs.

EgoSonics, being a generative model capable of accu-
rately predicting audio from muted video, should be re-
stricted to applications in research, the development of in-
teractive AR/VR technologies, and assistive technologies

for individuals with impairments. It is imperative to enforce
strict adherence to ethical guidelines to prevent the misuse
of this model for unethical purposes.
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