
Supplementary: Treading Towards Privacy-Preserving Table Structure

Recognition

Sachin Raja
IIIT Hyderabad

sachin.raja@research.iiit.ac.in

Ajoy Mondal
IIIT Hyderabad

ajoy.mondal@iiit.ac.in

C V Jawahar
IIIT Hyderabad

jawahar@iiit.ac.in

1. Dataset Preprocessing

Our model for cell detection is trained on the FinTab-
Net dataset, which initially provides bounding boxes around
cell content. To transform this dataset into one with cell-
level coordinates, we implement a preprocessing step. This
involves determining the minimum and maximum x and y
coordinates for each row and column based on the content
boxes. Subsequently, we refine the coordinates by splitting
the y-coordinate difference between adjacent rows by half.
This extends the maximum y end coordinate of the preced-
ing row while reducing the minimum y-coordinate of the
current row. Similarly, we split the x-coordinate difference
between adjacent columns by half, extending the maximum
x end coordinate of the previous column and reducing the
minimum x-coordinate of the current column. This pro-
cessing ensures that our dataset adheres to all constraints
relevant to our modeling approach. Figure 1 visualizes the
steps.

2. Postprocessing Cell Detection Output

Following the identification of table cell bounding boxes
and the prediction of row/column adjacency matrices, the
subsequent task is to establish row and column spans for
each cell, facilitating the reconstruction of the table’s struc-
ture. Our post-processing algorithm, an extension of previ-
ously proposed methodologies [1, 2], integrates word/token
bounding boxes extracted through OCR tools to refine cell
boxes and enhance structural recognition. The algorithm
entails several steps, including the removal of table cells
with heights below 60 percent of the average height of
predicted cells, the identification and exclusion of incor-
rectly predicted cells based on various loss weight values
and overlap considerations, and the definition of functions
for calculating overlap and containment between cell pairs.
Additionally, the algorithm involves sorting all table cells
based on their x-end coordinates and iterating through them
to assign column indices, considering overlapping cells
and applying threshold criteria. Ultimately, the resulting
columns list for each cell aids in determining the start and

(a) Original Table Image

(b) Original Cell Annotations

(c) Intermediate Annotations

(d) Final Preprocessed Annotations

Figure 1. Visualization of the Annotation Preprocessing steps to
ensure alignment and continuity

end column indices, contributing to the comprehensive re-
construction of the table’s layout.

Similarly, two functions are defined to calculate overlap
and containment for cell pairs along the vertical direction,
using ratios of intersecting line segment lengths. The sub-

1



sequent steps involve sorting all table cells based on their y-
end coordinates and addressing the challenge of multi-row
spanning cells by initializing empty lists for each cell and
setting the current row index to zero. The iterative process
involves identifying overlapping cells for each cell, updat-
ing the rows list based on specific criteria, and incrementing
the row index accordingly. The resultant rows list facilitates
the determination of start and end row indices for every cell.

Moving on to the smoothing and fine-tuning phase, row
and column indices, along with bounding boxes, are uti-
lized to align start and end coordinates. For columns, the
process involves extracting minimum start-x coordinates
and maximum end-x coordinates, dividing the gap equally
among adjacent cells to ensure adherence to continuity,
alignment, and non-overlapping constraints. The algorithm
further leverages an OCR tool, such as Tesseract [3], for
pre-processing the table image and obtaining word/token-
level bounding boxes. The final step involves refining the
predicted cell bounding boxes using token bounding boxes,
computing overlapping areas, assigning them to the high-
est overlapping cell, and adjusting cell boundaries along
both x and y directions to fully encapsulate the content.
This meticulous approach notably enhances detection per-
formance, particularly at higher Intersection over Union
(IoU) threshold values.

3. Optimization Behavior

Figures 2, 3, 4, 5 and 6 compare optimization behaviors
of using Table Grid Approximator (TGA) vs Region Pro-
posal Network (RPN) on classification, bounding-box re-
gression, alignment, row-continuity and column-continuity
losses respectively. Consistently across all five loss types, it
is evident that using TGA allows for optimization to a lower
loss value in a lesser time as compared to using RPN.

4. Distribution of Anchor Boxes

As opposed to a fix number of anchors set as 20,000,
using TGA allows dynamically generated anchors which
depend on the appromated grid size of the image. Figure
7 shows the probability distribution of text contours, grid
cells and anchors respectively on linear as well as log scale.
The graphs show that TGA allows for significantly reduced
number of anchors on average as opposed to a fixed number
of 20,000.

5. Annotation Errors in FinTabNet Train

Figures 8 through 12 demonstrate some erroneously
annotated images in the FinTabNet-Train dataset.

6. Qualitative Examples

Figures 13 through 24 demonstrate near-perfect struc-
ture prediction on dense tables as well as those containing
empty cells.

6.1. Success Cases

6.2. Failure Cases

Figures 25 through 28 demonstrate a few failure cases,
which despite being predicted incorrectly are not very far
from the ground truth.

6.3. Errors in Annotations in FinTabNet-Test

Figures 29 through 31 demonstrate some examples on
FinTabNet-Test dataset, which despite having incorrect an-
notations, were predicted accurately by our solution. This
further demonstrates the robustness of TabGuard.

References

[1] Sachin Raja, Ajoy Mondal, and CV Jawahar. Visual under-
standing of complex table structures from document images.
In Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision (WACV), pages 2299–2308, 2022.
1

[2] Sachin Raja, Ajoy Mondal, and C. V. Jawahar. Table structure
recognition using top-down and bottom-up cues. In European
Conference on Computer Vision (ECCV), pages 70–86, 2020.
1

[3] Ray Smith. An overview of the Tesseract OCR engine. In
ICDAR, 2007. 2

[4] Xinyi Zheng, Douglas Burdick, Lucian Popa, Xu Zhong,
and Nancy Xin Ru Wang. Global Table Extractor (GTE):
A framework for joint table identification and cell struc-
ture recognition using visual context. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), pages 697–706, 2021. 5, 6, 7, 8, 9, 10, 11, 12,
13, 14



Figure 2. Optimization behavior for the classification loss. Orange curve represents loss using Table Grid Approximator (TGA) instead of
Region Proposal Network (RPN), while the red curve represents loss using RPN instead of TGA.

Figure 3. Optimization behavior for the bounding box regression loss. Orange curve represents loss using Table Grid Approximator (TGA)
instead of Region Proposal Network (RPN), while the red curve represents loss using RPN instead of TGA.

Figure 4. Optimization behavior for the alignment loss. Orange curve represents loss using Table Grid Approximator (TGA) instead of
Region Proposal Network (RPN), while the red curve represents loss using RPN instead of TGA.



Figure 5. Optimization behavior for the row continuity loss. Orange curve represents loss using Table Grid Approximator (TGA) instead
of Region Proposal Network (RPN), while the red curve represents loss using RPN instead of TGA.

Figure 6. Optimization behavior for the column continuity loss. Orange curve represents loss using Table Grid Approximator (TGA)
instead of Region Proposal Network (RPN), while the red curve represents loss using RPN instead of TGA.

Figure 7. Distributions of text contours, table grid cells and generated anchors. X-axes denote the counts of contours, cells, and anchors
respectively, while Y-axis denotes probability of occurrence. Row 1 is on linear scale while Row 2 is on the log scale. It is clear that text
contours, grid cells and anchor boxes all follow log-linear distributions.



Figure 8. An example of file from Fintabnet-train [4] dataset which is incorrectly annotated. Reading order of images proceeds from left
to right and then to the next row. First image shows the original image, second image shows the original annotation, third image shows the
intermediate step of annotation preprocessing, and fourth image shows the preprocessed annotation.

Figure 9. An example of file from Fintabnet-train [4] dataset which is incorrectly annotated. Reading order of images proceeds from left
to right and then to the next row. First image shows the original image, second image shows the original annotation, third image shows the
intermediate step of annotation preprocessing, and fourth image shows the preprocessed annotation.



Figure 10. An example of file from Fintabnet-train [4] dataset which is incorrectly annotated. Reading order of images proceeds from left
to right and then to the next row. First image shows the original image, second image shows the original annotation, third image shows the
intermediate step of annotation preprocessing, and fourth image shows the preprocessed annotation.

Figure 11. An example of file from Fintabnet-train [4] dataset which is incorrectly annotated. Reading order of images proceeds from left
to right and then to the next row. First image shows the original image, second image shows the original annotation, third image shows the
intermediate step of annotation preprocessing, and fourth image shows the preprocessed annotation.



Figure 12. An example of file from Fintabnet-train [4] dataset which is incorrectly annotated. Reading order of images proceeds from left
to right and then to the next row. First image shows the original image, second image shows the original annotation, third image shows the
intermediate step of annotation preprocessing, and fourth image shows the preprocessed annotation.

Figure 13. An example of file from Fintabnet-test [4] dataset. Reading order of images proceeds from left to right and then to the next
row. First image shows the original annotation, second image shows the masked image, third image shows the approximated table grid,
and fourth image shows the output of TabGuard.



Figure 14. An example of file from Fintabnet-test [4] dataset. Reading order of images proceeds from left to right and then to the next
row. First image shows the original annotation, second image shows the masked image, third image shows the approximated table grid,
and fourth image shows the output of TabGuard.

Figure 15. An example of file from Fintabnet-test [4] dataset. Reading order of images proceeds from left to right and then to the next
row. First image shows the original annotation, second image shows the masked image, third image shows the approximated table grid,
and fourth image shows the output of TabGuard.

Figure 16. An example of file from Fintabnet-test [4] dataset. Reading order of images proceeds from left to right and then to the next
row. First image shows the original annotation, second image shows the masked image, third image shows the approximated table grid,
and fourth image shows the output of TabGuard.



Figure 17. An example of file from Fintabnet-test [4] dataset. Reading order of images proceeds from left to right and then to the next
row. First image shows the original annotation, second image shows the masked image, third image shows the approximated table grid,
and fourth image shows the output of TabGuard.

Figure 18. An example of file from Fintabnet-test [4] dataset. Reading order of images proceeds from left to right and then to the next
row. First image shows the original annotation, second image shows the masked image, third image shows the approximated table grid,
and fourth image shows the output of TabGuard.

Figure 19. An example of file from Fintabnet-test [4] dataset. Reading order of images proceeds from left to right and then to the next
row. First image shows the original annotation, second image shows the masked image, third image shows the approximated table grid,
and fourth image shows the output of TabGuard.



Figure 20. An example of file from Fintabnet-test [4] dataset. Reading order of images proceeds from left to right and then to the next
row. First image shows the original annotation, second image shows the masked image, third image shows the approximated table grid,
and fourth image shows the output of TabGuard.

Figure 21. An example of file from Fintabnet-test [4] dataset. Reading order of images proceeds from left to right and then to the next
row. First image shows the original annotation, second image shows the masked image, third image shows the approximated table grid,
and fourth image shows the output of TabGuard.

Figure 22. An example of file from Fintabnet-test [4] dataset. Reading order of images proceeds from left to right and then to the next
row. First image shows the original annotation, second image shows the masked image, third image shows the approximated table grid,
and fourth image shows the output of TabGuard.



Figure 23. An example of file from Fintabnet-test [4] dataset. Reading order of images proceeds from left to right and then to the next
row. First image shows the original annotation, second image shows the masked image, third image shows the approximated table grid,
and fourth image shows the output of TabGuard.

Figure 24. An example of file from Fintabnet-test [4] dataset. Reading order of images proceeds from left to right and then to the next
row. First image shows the original annotation, second image shows the masked image, third image shows the approximated table grid,
and fourth image shows the output of TabGuard.

Figure 25. An example of file from Fintabnet-test [4] dataset, where our model failed to capture near accurate structure. Reading order of
images proceeds from left to right and then to the next row. First image shows the original annotation, second image shows the masked
image, third image shows the approximated table grid, and fourth image shows the output of TabGuard.



Figure 26. An example of file from Fintabnet-test [4] dataset, where our model failed to capture near accurate structure. Reading order of
images proceeds from left to right and then to the next row. First image shows the original annotation, second image shows the masked
image, third image shows the approximated table grid, and fourth image shows the output of TabGuard.

Figure 27. An example of file from Fintabnet-test [4] dataset, where our model failed to capture near accurate structure. Reading order of
images proceeds from left to right and then to the next row. First image shows the original annotation, second image shows the masked
image, third image shows the approximated table grid, and fourth image shows the output of TabGuard.



Figure 28. An example of file from Fintabnet-test [4] dataset, where our model failed to capture near accurate structure. Reading order of
images proceeds from left to right and then to the next row. First image shows the original annotation, second image shows the masked
image, third image shows the approximated table grid, and fourth image shows the output of TabGuard.

Figure 29. An example of file from Fintabnet-test [4] dataset which is incorrectly annotated. Reading order of images proceeds from left
to right and then to the next row. First image shows the original annotation, second image shows the masked image, third image shows the
approximated table grid, and fourth image shows the output of TabGuard.

Figure 30. An example of file from Fintabnet-test [4] dataset which is incorrectly annotated. Reading order of images proceeds from left
to right and then to the next row. First image shows the original annotation, second image shows the masked image, third image shows the
approximated table grid, and fourth image shows the output of TabGuard.



Figure 31. An example of file from Fintabnet-test [4] dataset which is incorrectly annotated. Reading order of images proceeds from left
to right and then to the next row. First image shows the original annotation, second image shows the masked image, third image shows the
approximated table grid, and fourth image shows the output of TabGuard.


	. Dataset Preprocessing
	. Postprocessing Cell Detection Output
	. Optimization Behavior
	. Distribution of Anchor Boxes
	. Annotation Errors in FinTabNet Train
	. Qualitative Examples
	. Success Cases
	. Failure Cases
	. Errors in Annotations in FinTabNet-Test


